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1. INTRODUCTION

Thermal ablation treatments in cancer therapy heat a tar-
get volume, enough to cause it to burn, but leave healthy
tissue and neighboring sensitive structures undamaged; see
Chu and Dupuy (2014). The placement of the heat source
and the control of its power are essential for an effective
ablation, and are affected by the size and location of the
target. In the following, we propose a novel approach to the
power-placement problem by dissecting it into two parts.

In the first part we determine the optimal heat source
by solving a distributed elliptic optimal control problem,
which is parametrized with respect to problem relevant
parameters. Using the certified reduced basis method for
parametrized distributed elliptic optimal control problems
presented in Kärcher et al. (2017), a reliable and real-time
efficient surrogate model is created.

The second part determines a reproduction of the optimal
heat from the first part using heat sources produced by
ablation devices. This is achieved by the optimization of
the power settings and placement parameters of one or
multiple heat sources. A greedy multiple heat source place-
ment algorithm is introduced, so that multiple heat sources
can be positioned in order to improve the approximation
of the target function.

2. PART I: OPTIMAL HEAT DISTRIBUTION

2.1 Transfer of Heat in Living Tissue

The Pennes bioheat equation in Pennes (1948) describes
the heat transfer in living tissue and approximates the
cooling effect of blood circulation as an isotropic heat
sink, proportional to the blood flow rate and the difference
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between the body core temperature and the local tis-
sue temperature. The non–dimensional stationary bioheat
equation is

−k∆y + cy = u, in Ω

k∇νy + hy = 0 on Γ
(1)

where y and u ∈ U = L2(Ω) are the temperature and
heat functions, k is the thermal conductivity, c is the blood
perfusion parameter and h is the convection parameter.

The corresponding weak formulation is∫
Ω

k∇y∇φ+

∫
Ω

cyφ+

∫
Γ

hyφ =

∫
Ω

uφ

⇔ a(y, φ;µ) = b(u, φ;µ)

(2)

for all φ ∈ Y = H1(Ω), where a(·, ·;µ) : Y × Y →
R is continuous and coercive, b(·, ·;µ) : U × Y → R
is continuous, and µ ∈ D represents the parameters
of interest. Here, µ may include tissue parameters or
geometric parameters such as the proximity of the tumor
to risk structures as in Tokoutsi et al. (2017).

2.2 The Distributed Optimal Heat Problem

The optimal heat is the solution of a distributed optimal
control problem, constrained by the bioheat equation (1).
The computational domain is divided into target Ω1, risk
Ω2 and healthy Ω3 tissue. The target temperature is set to
be 0.18 over the target Ω1 and 0 elsewhere. Each term in
the cost functional is weighted according to its significance.
The optimal heat can be parametrized with respect to the
problem parameters, and the weights of the summands of
the corresponding cost functional.

The optimal heat u∗ is determined as the solution to

min
u∈U

J(y, u) : =

3∑
i=1

λi
2
‖y − yd‖2L2(Ωi)

+
λ

2
‖u‖2L2(Ω)

= d(y − yd, y − yd;µ) + λ c(u, u;µ)/2

s.t. a(y, v;µ) = b(u, v;µ) ∀v ∈ Y = H1(Ω)

(3)
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Using the Lagrangian formulation and calculating the
first order optimality conditions of the resulting opti-
mization problem, a system of equations is obtained; see
e.g. Tröltzsch (2005). Given µ ∈ D the optimal solution
(y∗, u∗, p∗) ∈ Y × U × Y satisfies

a(y∗, φ;µ) = b(u∗, φ;µ) ∀φ ∈ Y,
a(ϕ, p∗;µ) = d(yd(µ)− y∗, ϕ;µ) ∀ϕ ∈ Y,
λc(u∗, ψ;µ)− b(ψ, p∗;µ) = 0 ∀ψ ∈ U.

(4)

Here p∗ is the adjoint function and the equations (4)
correspond to the vanishing directional derivatives of the
Lagrangian of (3), and are called the state, adjoint and
gradient equations.

3. REDUCED BASIS APPROXIMATION

The efficient and reliable online solution of PART I is
achieved by employing the Reduced Basis (RB) method.
Using an adjusted version of the well established greedy
sampling algorithm, a sample set DN = {µ1, · · · , µN} ⊂
D, the associated integrated reduced basis space YN =
span{y∗(µn), p∗(µn), 1 ≤ n ≤ N}, and the reduced basis
control space UN = span{u∗(µn), 1 ≤ n ≤ N}, 1 ≤
N ≤ Nmax, are generated. The greedy algorithm utilizes
rigorous and (online-)efficient a posteriori error bounds,
which are obtained by manipulating the error residual
equations of the optimality system (4). It can be shown
that:

Proposition 1. For any µ ∈ D the optimal heat error in
the energy heat norm ‖ · ‖U(µ) satisfies

∆u,ALT
N (µ) := c1(µ) +

√
c1(µ)2 + c2(µ),

where c1(µ), c2(µ) depend on the lower bound of the
coercivity constant of a(·, ·;µ), the upper bound of the
continuity constant of b(·, ·;µ), and the upper bound CUB

D
for the constant CD(µ) := supu∈Y |u|D(µ)/‖v‖Y ≥ 0, and
the dual norms of the residuals of the equations in system
4; for details, see Kärcher et al. (2017).

4. PART II: GREEDY MULTIPLE HEAT SOURCE
PLACEMENT

4.1 Heat Source Power-Placement Optimization

The second part of our proposed method is concerned
with the optimization of the power P ∈ R and placement
χ ∈ Rm, m = 5 in 3-D, of a finite number of heat sources
using the optimal heat u∗ of the first part as target. We
assume here that the heat sources are reproducible with
state-of-the-art medical equipment. We further assume
that each heat source can be described using a sufficiently
smooth closed formulation, e.g.

Q(x, χ, P ) = P exp
(
− (x− χ)2/(2γ2)

)
, (5)

where the variance γ2 is fitted so that Q approximates
the heat source produced by a radiofrequency ablation
probe. The optimal placement χ? and power P ? of each
heat source results from solving an optimization problem,
where the target heat function U = U(x;µ) depends on
u∗(x;µ)

(χ?, P ?) = argmin
χ, P

I(χ, P ;µ) := ‖Q(χ, P )− U‖2L2(Ω) (6)

The power-placement optimization problem (6) is a low di-
mensional optimization problem which can be solved with

common optimization algorithms such as quasi-Newton or
trust region methods; see e.g. Nocedal and Wright (2006).
Due to the non-convexity of the cost functional, there exist
multiple local minima to I(χ, P ;µ).

4.2 Greedy Multiple Heat Source Placement Algorithm

The placement of multiple heat sources can be achieved
iteratively until the collective heat source Q? adequately
approximates the optimal heat u∗. The proposed greedy
multiple heat source placement algorithm will locate the
most significant local minima of I(χ, P ;µ).

Algorithm 1. (Multiple Heat Source Placement). The al-
gorithm is initialized with U = u∗ of PART I as target
function. On each iteration (k), the termination criteria
are checked, the target heat source is updated to U = U −
Q(µ(k−1),?) and P (k),?, χ(k),? are determined by solving
(6).

The termination criteria consist of the achievement of
a prescribed tolerance for the relative heat error norm
or for the change in the value of the cost function. A
further relevant criterion refers to exceeding a prescribed
maximum number of heat sources.

5. SUMMARY

This work presents an algorithm for multiple heat source
placement, motivated by thermal ablation treatments, and
our steps toward real-time efficiency using the reduced
basis method. Numerical results are presented to show the
performance of the proposed approach.
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