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This work pursues the central task to efficiently solve opti-
mal control problems for complex — and thus, expensive-to-
evaluate — dynamical systems with the help of data-driven
surrogate models. Mathematically speaking, we consider
the following problem over the time horizon p - At:
p—1
lin J(y) = min >  P(yir1) 0

i=0
st Yit1 :(p(yb7ul)7 i:O7172a"'7

where y; and u; € U are the system state and control at
time instant ¢; = iAt. The objective function (for instance,
the distance to some desired trajectory y"f) is denoted by
P, and ® describes the flow of the underlying dynamical
system (e.g., an ordinary or a partial differential equation)
over the time increment At. The solution of (I) yields the
optimal control u* and corresponding state y*.

A substantial challenge that we often face is the fact
that the efficient prediction (and, by extension, control)
of complex dynamical systems is hindered by the fact that
the system dynamics are either very expensive to simulate
or even unknown. Researchers have been investigating
ways to accelerate the solution by using data for decades,
the Proper Orthogonal Decomposition (POD) being an
early and very prominent example (Sirovich, 1987). More
recently, the major advances in data science and machine
learning have lead to a plethora of new possibilities, for
instance artificial neural networks, sparse regression for the
identification of nonlinear dynamics (Brunton et al., 2016),
or numerical approximations of the Koopman operator
(Rowley et al., 2009; Klus et al., 2020), which describes the
linear dynamics of observable functions. These methods
facilitate the efficient simulation and prediction of high-
dimensional spatio-temporal dynamics using measurement
data, without requiring prior system knowledge. For con-
trol systems, a drawback is that the construction of surro-
gate models with inputs is often much more tedious and
also problem-specific and data hungry (Bieker et al., 2020).

The approach we present here to solve (I) via surrogate
models while avoiding the aforementioned issues is based
on modifying the control problem instead of adjusting the
surrogate modeling to the control setting. The resulting
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framework, which we call QuaSiModO, consists of the
following steps (cf. also Figure 1):

(1) Quantization of the the admissible control U (for
instance by replacing the interval U = [u™", u™] by
the bounds V' = {u™" um*});

(2) Simulation of the autonomous systems with fixed
inputs (e.g., @ mn/m (y) = (y, umn/max);

(3) Modeling of the individual systems via an arbitrary
“off-the-shelf” surrogate modeling technique;

(4) Optimization using the resulting set of autonomous
surrogate models and relaxation techniques.

This interplay between continuous and integer control
modeling as well as between the full system state and ob-
served quantities (e.g., measurements) allows us to utilize
the best of both worlds, namely

e integer controls for efficient data-driven modeling,
e continuous control inputs for real-time control, and
e existing error bounds for predictive models.

QuaSiModO successively transforms Problem (I) into re-
lated control problems that — as long as the predictive
surrogate model is sufficiently accurate — yield optimal
trajectories y* that are close to one another. From (I) to
(II), we quantize the control, meaning that only a finite
set V' C U of inputs is feasible. This allows us to replace
the non-autonomous dynamical system ®(y,u) by a finite
set of autonomous systems ®,;(y), each corresponding

Fig. 1. The QuaSiModO framework consisting of the
four steps Quantization, Simulation, Modeling and
Optimization (Peitz and Bieker, 2021).
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Fig. 2. QuaSiModO applied to various combinations of systems and surrogate models for model predictive control.

to one entry w/ € V. While introducing an artificial
drawback from the control perspective (Problem (II) is a
mixed-integer optimal control problem), we can now easily
introduce an equivalent Problem (III) that is based on
surrogate models ®7;(z) for a reduced quantity z = f(y).
Here, the function f is an observable which maps measure-
ments from the state space of the full system to the space
of measurements (which may be of significantly smaller
dimension). As the transformation from (II) to (III) acts
on a set of autonomous systems, we can approximate the
individual systems ®,; from individual measurement data
sets, using whichever method we prefer.

In order to mitigate the disadvantages with respect to the
complexity of the control problem, the problem of selecting
an optimal input from V is relaxed by determining the
optimal convex combination of the autonomous systems:

min  J"(z) = min
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Problem (IV) is again continuous — with respect to the
input «. For control affine systems, we can directly apply
u* = Y7 afu’ to the real system. For non-affine sys-
tems, we use the sum up rounding algorithm from (Sager
et al., 2012), by which a control corresponding to one of

the quantized inputs is applied to the real system.

(Iv)

Besides the ability to include arbitrary models, an impor-
tant aspect is that existing error bounds for the chosen
surrogate model can easily be included, see (Peitz and
Bieker, 2021) for a detailed description The availability
of error bounds is of particular importance for engineering
systems, where safety is of utmost importance (e.g., for air-
craft or autonomous vehicles). The bounds guarantee the
performance of a controller and — more importantly — will
automatically become stronger with future developments
in the field of data-driven modeling.

We have tested the QuaSiModO framework on a variety
of dynamical systems, observable functions and surrogate
modeling techniques, cf. Figure 2, a detailed description is
given in (Peitz and Bieker, 2021). For instance, we can
control the lift force acting on a cylinder (determined
by the velocity and pressure fields governed by the 2D
Navier—Stokes equations) without any knowledge of the
flow field using the standard LSTM framework included
in TensorFlow, and stabilize the Mackey-Glass equation
using a standard echo state network. This highlights the
flexibility and broad applicability of the method and
the success of the technique in constructing data-driven
feedback controllers.

REFERENCES

Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., and
Dellnitz, M. (2020). Deep model predictive flow control
with limited sensor data and online learning. Theoretical
and Computational Fluid Dynamics, 34, 577-591.

Brunton, S.L., Proctor, J.L., and Kutz, J.N. (2016). Dis-
covering governing equations from data by sparse identi-
fication of nonlinear dynamical systems. Proceedings of
the National Academy of Sciences, 113(15), 3932-3937.

Klus, S., Niske, F., Peitz, S., Niemann, J.H., Clementi,
C., and Schiitte, C. (2020). Data-driven approximation
of the Koopman generator: Model reduction, system
identification, and control. Physica D: Nonlinear Phe-
nomena, 406, 132416.

Peitz, S. and Bieker, K. (2021). On the Universal Trans-
formation of Data-Driven Models to Control Systems.
arXiv:2021.04722.

Rowley, C.W., Mezi¢, 1., Bagheri, S., Schlatter, P., and
Henningson, D.S. (2009). Spectral analysis of nonlinear
flows. Journal of Fluid Mechanics, 641, 115-127.

Sager, S., Bock, H.G., and Diehl, M. (2012). The integer
approximation error in mixed-integer optimal control.
Mathematical Programming, 133(1-2), 1-23.

Sirovich, L. (1987). Turbulence and the dynamics of co-
herent structures part I: coherent structures. Quarterly
of Applied Mathematics, XLV (3), 561-571.





