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1. INTRODUCTION

Let D ⊂ R2 be a non-empty open bounded connected do-
main, ω ( D, and consider the following set of admissible
domains
Oω = {Ω ⊂ U : Ω ⊃ ω, Ω is open, bounded, connected,

and at least of class C0,1} .
Let f ∈ L2(D;R2) be a stationary fluid source function,
which can be interpreted as the force that steers the fluid
at a constant pace—an example of this is a fluid pump and
fluid outlet that act on the fluid at the same rate— and
Ω ∈ Oω. The time-dependent Navier–Stokes equations on
the interval (0, T ) is given by

∂tu− ν∆u + γ(u · ∇)u +∇p = f in Ω× (0, T ),
∇ · u = 0 in Ω× (0, T ),

u = 0 in ∂Ω× (0, T ),
u = u0 in Ω× {0},

(1)

where u and p correspond to the dynamic fluid velocity
and pressure, respectively, and u0 ∈ L2(U ;R2) is the initial
velocity that satisfies ∇ · u0 = 0 in Ω. The parameter
ν > 0 denotes the fluid viscosity. On the other hand, we
call γ ≥ 0 the convection parameter. We also look at the
stationary Navier–Stokes equations

−ν∆v + γ(v · ∇)v +∇q = f in Ω,
∇ · v = 0 in Ω,

v = 0 in ∂Ω,
(2)

where v and q are the equilibrium fluid velocity and
pressure, respectively.
On both equations, if γ = 1 we reduce to the usual
Navier–Stokes equations, while γ = 0 gives us the Stokes
equations.
We focus on the analysis of two shape optimization prob-
lems governed by equations (1) and (2). In particular,
given a static desired velocity uD ∈ L2(ω;R2), we consider
the time-average problem

min
Ω∈Oω

JT (Ω) := ν

T

ˆ T

0
‖u(t)− uD‖2L2(ω;R2×2) dt

subject to (1),

 (3)
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and the stationary shape design problem
min

Ω∈Oω
Js(Ω) := ν‖v − uD‖2L2(ω;R2)

subject to (2).

}
(4)

We denote the solutions of (3) and (4) by ΩT and Ωs. Our
goal is to show that

|J∗T − J∗s | ≤ c
(

1
T

+ 1√
T

+ γ

21/2

)
(5)

where J∗T := JT (ΩT ), J∗s := Js(Ωs), and the constant
c := c(u0,uD,f , 1/ν,U) > 0 is independent of T .
Inequality (5) attempts to answer the contention that so-
lutions to dynamic fluid shape design problems are close to
the solution of the equilibrium problem. This assumption
is one of the reasons why majority of shape optimization
problems involving fluid deals with the stationary state
equations rather than the time-dependent case.
Remark 1. Note that when γ = 0, both systems (1) and
(2) can be realized as parabolic and elliptic problems,
respectively, and inequality (5) reduces to the estimate of
Trelat et al. (2018).

Our result is summarized in the following theorem.
Theorem 2. Suppose that f ∈ L2(U ;R2), u0 ∈ H(Ω) ∩
L2(U ;R2), and uD ∈ L2(ω;R2). If J∗T := JT (ΩT ) and
J∗s := Js(Ωs), where ΩT and Ωs are the solutions of (3)
and (4), respectively; then there exists c > 0, independent
of T , such that (5) holds.

As a consequence, we obtain a sense of convergence of
solutions of (3) to a solution of (4). We formalize this
result below.
Corollary 3. Suppose that the assumptions in Theorem 2
hold. Then there exists Ω∗ ∈ Oω, such that ΩT −→

χ Ω∗ as
T → ∞, and that |J∗s − Js(Ω∗)| ≤ 21/2cγ, where c > 0
is the same constant as in Theorem 2. Here, the symbol
−→χ denotes the domain convergence with respect the the
indicator functions in L∞-topology.

2. NUMERICAL REALIZATION

To solve the problem numerically, we rely on a gradient
descent method induced by the identity perturbation op-
erator. For more details, we refer to Delfour and Zolesio
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(2011). We compute the shape derivative of the objec-
tive functions in the sense of Hadamard’s, i.e., the shape
derivative of a given objective function J : Oω → R
in the direction of θ ∈ Θ is denoted and defined as
dJ (Ω)θ = limτ↘0

J (Ωτ )−J (Ω)
τ .

The shape derivative of JT and Js have already been com-
puted (see Kasumba and Kunisch (2012), and Mohammadi
and Pironneau (2010) among others), hence we skip such
step in this exposition. Nevertheless, such derivatives are
given below

dJT (Ω)θ = ν

T

ˆ T

0

[ˆ
∂Ω

(∂nu(t) · ∂nw(t))θ · n dσ

+
ˆ

Ω
∇ · (χω|u(t)− uD|2θ) dx

]
dt,

dJs(Ω)θ = ν

[ˆ
∂Ω

(∂nv · ∂nz)θ · n dσ

+
ˆ

Ω
∇ · (χω|v − uD|2θ) dx

]
,

where w ∈ L∞(I;H(Ω)) ∩ L2(I;V (Ω)) is the time depen-
dent adjoint variable that satisfies the variational problem

V ∗(Ω)〈−∂tw(t),ϕ〉V (Ω) + ν(∇w(t),∇ϕ)Ω

+ γ[((ϕ · ∇)u(t),w(t))Ω − ((u(t) · ∇)w(t),ϕ)Ω]
= 2(u(t)− uD,ϕ)ω ∀ϕ ∈ V (Ω),

and the transversality condition w(T ) = 0, while z ∈ V (Ω)
solves the equation

ν(∇z,∇ϕ)Ω + γ[((ϕ · ∇)v, z)Ω − ((v · ∇)z,ϕ)Ω]
= 2(v − uD,ϕ)ω ∀ϕ ∈ V (Ω).

Note that both derivatives can be expressed with the
Zolesio-Hadamard structure, i.e., we can write

dJ (Ω)θ =
ˆ
∂Ω
∇Jn · θ dσ,

where ∇J is called the shape gradient.These shape gra-
dients will be the basis of our descent directions, i.e., by
choosing θ = −∇Jn in ∂Ω we are assured that

dJ (Ω)θ = −‖θ‖2L2(∂Ω;R2) < 0.
Numerically though, such choice of descent direction may
cause oscillations on the perturbed domains. Because of
that, we shall resort to a traction method that intends
to extend the choice of θ to the whole domain, say for
example by a Robin boundary problem, see Azegami and
Takeuchi (2006).
The variational equations are solved using Galerkin finite
element methods. The stationary Navier–Stokes equations
is solved using Newton’s method, the dynamic Navier–
Stokes equations and the time-dependent adjoint equation
are solved using a Lagrange–Galerkin method based on
characteristics, and the stationary adjoint equation is
solved by the usual Galerkin method.

2.1 Numerical Implementation

For simplicity, we choose f = 1
10 (y3,−x3), the desired

function is the solution of the Stokes equations with ν =
1/5 in a domain enclosed in a circle that satisfies x2 +
y2 = 4, and the domain ω ⊂ R2 is the set {(x, y)R2 : x2 +
y2 ≤ 1}. The shape optimization problems are then solved

with parameter values ν = γ = 1, and with the initial
velocity u = 0.
To illustrate the convergence of the solutions of the time-
dependent problems, we have Figure 1. Figure 1(A) shows
that the boundary of the solutions ∂ΩT,h becomes closer
to the boundary Ωs,h as the terminal time T gets bigger.
Figure 1(B) shows the log-log plot of the gap |JT − Js|
versus the terminal time T . In the same figure, we plotted
the plots of O(T−1) and O(T−1/2). Coincidental with
the theoretical result, for lower values of T the order of
convergence nearly follows O(T−1/2), while we observe a
convergence that is similar with O(T−1) for higher values
of T .
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Fig. 1. Illustration of how the boundary of the shape
solution of the time-dependent problem (3) converges
to the boundary of the solution of the equilibrium
problem (4) as T gets larger (A); log-log plots of
|JT,×−Js,×|, O(T−1), and O(T−1/2)(B); trend of the
Hausdorff distance between the solutions of (3) and
(4) (C).

Lastly, we quantified the convergence of the boundaries
by virtue of the Hausdorff distance. We observe in Figure
1(C) that the Hausdorff distance indeed gets smaller as
the value of x, which is such that T = 2x, increases.
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