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Abstract: This work is concerned with learning the dynamics of technical systems from data
within a sparse Bayesian framework. The approach employs a basis representation of the
unknown dynamics function, similar to the sparse identification of nonlinear dynamics (SINDy)
approach, which is combined with a Bayesian procedure for parameter estimation. We propose
to use the recently introduced neuronized priors as a unified approach to enforce sparsity in a
dynamical systems context, and illustrate the method with an academic example.

Keywords: Uncertainty, dynamic systems, parameter estimation, parameter identification,
probabilistic simulation.

1. INTRODUCTION

Learning the dynamics of a system from data is receiv-
ing considerable attention at present. Here, we focus on
autonomous systems of the form

ẋ(t) = f(x(t)), x(0) = x0, (1)

where x(t) ∈ Rn, f : Rn → Rn, t ∈ (0, T ] and ẋ =
dx/dt. One particularly popular paradigm, the sparse
identification of nonlinear dynamics (SINDy) Brunton
et al. (2016a), represents the unkonwn dynamics f as a
linear combination of library basis functions as

fi(x) ≈ Θ(x)ξi, (2)

where ξi ∈ Rp, i = 1, . . . , n are the parameters to be
identified and Θ represents the library of basis functions.
For notational convenience, all parameter vectors are col-
lected in a matrix as Ξ = [ξ1 · · · ξn]. Popular choices of
basis functions are polynomials or splines, which are able
to accurately approximate large classes of functions. In
the original paper Brunton et al. (2016a), regression with
iterative thresholding was used to estimate the parameters
from data of ẋ(t). Since then, extensions in many differ-
ent directions have been proposed. Control scenarios were
addressed in Brunton et al. (2016b), whereas uncertainty
was included through a Bayesian extension in Fuentes
et al. (2021). Another Bayesian approach, also including
noisy observations of the state directly, was introduced
in Galioto and Gorodetsky (2020), which contained the
original SINDy approach as a special case. Also, there exist
deep learning based approaches, such as Goyal and Benner
(2021) to learn the model as a black box. In contrast,

? The authors acknowledge internal funding by the faculty of me-
chanical engineering at Technische Universität Braunschweig.

we aim for a white-box model for which a bases library
approach is better suited.

Despite these contributions, several challenges remain. En-
forcing sparsity in a Bayesian framework is challenging and
may require to work with complicated prior formulations.
Also, jointly handling all sources of uncertainty goes be-
yond the linear regression setting and the computational
complexity will grow quickly. Here, we report and extend
on our work pre-published in Ram et al. (2021).

2. BAYESIAN SYSTEM IDENTIFICATION

In this section we present our approach to estimate the
unknown parameters Ξ, while simultaneously accounting
for observation, process and model uncertainty. Therefore,
we apply a suitable approximation method in time, an
explicit Runge Kutta method for the sake of simplicity,
which yields

xi+1 = xi + Ψh(Θ(xi)Ξ), x0 = x0, (3)

where i = 0, . . . ,m − 1, xi ≈ x(ti) and Ψh specifies the
discrete Runge Kutta time propagator on the time grid
with uniform grid size h. Then, we introduce the stochastic
state space model

xi+1 = xi + Ψh(Θ(xi)Ξ) + ηi, (4)

yj = xj + εj , (5)

where j = 1, . . . , k indicates the observation time. Note
that the considered example employs the full state, which
is why we employ an observation of the full state in (5).
However, the method can easily be extended to cover more
general state-to-observation maps. Also, the process and
observation noise are assumed to be distributed as ηi ∼
N (0, σ2

ηI) and εj ∼ N (0, σ2
εI), respectively. This setting

is close to the one considered in Galioto and Gorodetsky
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Fig. 1. Posterior histograms of ξi and true values (red
stars).

(2020), where the joint distribution p(Ξ,X), with X
collecting all states xi into a matrix, was inferred with
a Kalman-type filter. Because we are mainly interested in
the marginal distribution

p(Ξ) =

∫
p(Ξ,X) dX, (6)

we pursue a different path and focus on updating the
parameters directly. We employ an ensemble of N states,
propagated in time according to p(xi+1|xi) and base
inference on the average Likelihood

L̂(Y|Ξ) =
1

N

N∑
i=1

k∏
j=1

1√
(2π)kσ2

ε

exp

(
−
|yj − x

(i)
j |2

2σ2
ε

)
,

(7)
which ensures robustness against process noise, see also
Conrad et al. (2017). We then update the posterior distri-
bution with Bayes’ law as

p(Ξ|Y) ∝ L̂(Y|Ξ)p(Ξ), (8)

which we sample with Markov Chain Monte Carlo meth-
ods. In addition to employing the average Likelihood,
another original contribution is the use of a generalized
formulation of sparsity priors given as

ξi = T (αi − α0)wi, (9)

where wi ∼ N (0, τw), αi ∼ N (0, 1) and T is an activation
function from neural network methods, which motivates
the name neuronized prior, see Shin and Liu (2021).
Through different choices for T we can recover various
priors, such as Lasso, Horseshoe and Spike and Slab priors.
The case of spike and slab prior is of particular interest,
because it allows to obtain zero inclusion probabilities of
individual basis functions in the library and hence, model
selection can be carried out as well.

3. NUMERICAL EXAMPLE

Here, we present an application to estimate the coefficients
of the first equation of the Lorenz system

ẋ1 = c1(x2 − x1),

ẋ2 = 28x1 − x1x3 − x2,
ẋ3 = x1x2 − 2.67x3.

(10)

First, c1 is set to a value of 10, and data yj is simulated

by propagating the initial state [x01, x
0
2, x

0
3]> = [−8, 8, 27]>

using MATLAB’s ODE23 solver. Observation noise with
σε = 0.01 is added to generate the data. A total simulation
time of 1.5 units, with h = 10−4 is considered.

For the above application, a basis library Θ = [x1, x2,
x3, x1x2, x1x3, x2x3] is employed, and corresponding

coefficients ξ1, ξ2, . . . , ξ6 are to be estimated. The standard
deviation of the process noise ση is calibrated with an
empirical Bayes approach, as outlined in Conrad et al.
(2017), which leads to ση = 256 in the current case.

To obtain the posterior given by (8), an Affine Invariant
Ensemble MCMC sampler (AIES) is employed. To facili-
tate straightforward model selection, the ReLu activation
function T (αi − α0) = max(0, αi − α0) is chosen. With
the help of a grid search, the neuronised prior’s hyper-
parameters α0 and τw are assigned values -0.25 and 0.1,
respectively. A burn-in of 50% is considered and 75% of
the AIES walkers are discarded as bad chains.

The resulting posterior histograms for the first two coeffi-
cients are plotted in Figure 1. It can be seen that the poste-
riors for both the coefficients are centered around their true
values denoted by red stars. Also, the resulting posteriors
for the coefficients ξ3, ξ4, . . . , ξ6 yield P (ξi = 0) > 0.5.
Hence, a median model selection would remove those ξi
for which P (ξi = 0) > 0.5 and successfully recover the
original Lorenz system. The histograms for the coefficients
ξ3, ξ4, . . . , ξ6 haven’t been presented here as they resemble
concentrated spikes at zero, with negligible spread.

We shall investigate the performance of the method with
different, more complex, examples in the future.
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