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Abstract: The quality of molecular dynamics (MD) simulations critically depends on the
employed potential energy model. Accurate uncertainty quantification (UQ) of these models
could increase trust in MD simulation predictions and promote progress in the field of active
learning of neural network (NN) potentials. Bayesian methods promise reliable uncertainty
estimates, but the high computational cost of training via classical Markov Chain Monte Carlo
(MCMC) schemes has prevented their application to deep NN potentials. In this work, we
propose stochastic gradient MCMC methods as a computationally efficient option for Bayesian
UQ of MD potentials. The stochastic gradient Langevin dynamics method yields promising
results for a tabulated coarse-grained water model and could thus be a feasible approach for
NN potentials. Additionally, we illustrate the inherent limit of Bayesian UQ imposed by the

functional form of the employed model.
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1. INTRODUCTION

Molecular dynamics (MD) simulations are the computa-
tional backbone of fields such as soft-matter physics and
material science. The quality of MD simulations criti-
cally depends on the employed potential energy model
defining particle interactions. Potentials are parametrized
to match data from experiments (Thaler and Zavadlav
(2021)) or high fidelity simulations. Given that experimen-
tal data and high fidelity simulations are expensive and
only sparsely available, potentials are regularly applied
outside the training domain. Hence, uncertainty quantifi-
cation (UQ) of MD simulations is important to assess the
trustworthiness of predictions (Zavadlav et al. (2019)).
An intriguing application of UQ in MD is active learning
(Zhang et al. (2019)) of neural network (NN) potentials
(Behler and Parrinello (2007)) from density functional
theory (DFT) data. Active learning promises to minimize
the number of expensive DFT simulations by quantifying
the uncertainty of input states and iteratively augmenting
the training data set only with states for which the NN
potential is most uncertain. However, the efficiency of
active learning hinges on the quality of UQ estimates. The
common approach to UQ using NN ensembles (Hansen
and Salamon (1990)) was found to be only marginally
more informative than random selection of states (Kahle
and Zipoli (2021)). While Bayesian NNs appear to yield
more reliable uncertainty estimates, the high computa-
tional training cost of classical Markov Chain Monte Carlo
(MCMC) schemes have prevented the application to real-
world problems so far (Kahle and Zipoli (2021)).

In this work, we propose stochastic gradient MCMC meth-

ods (SG-MCMC) as a computationally efficient option for
Bayesian UQ of MD potentials. Results for a tabulated
coarse-grained (CG) model of water showcase reasonable
uncertainty predictions.

2. METHODS

Bayesian UQ is centered around Bayes’ theorem. The
aim is to compute the posterior distribution p(8|D, M)
of model parameters @ for a given data set D and model
M. MCMC is the gold-standard for approximating the
posterior, which requires at least one evaluation of the like-
lihood p(D|@, M) and the prior p(6|M) for each update
of 8. As computing the likelihood requires evaluation of
the model for each data point in D, training on large data
sets with expensive models (e.g. NN potentials) quickly
becomes infeasible. By contrast, SG-MCMC schemes eval-
uate the likelihood p(@|D, M) (and its gradient) only on

a mini-batch D C D, allowing many updates of 8 per
pass over D - analogous to stochastic gradient descent in
maximum likelihood estimation. In the simplest case of the
stochastic gradient Langevin dynamics method (Welling
and Teh (2011)), learning rates A, at step n are required to
converge to 0 such that generated samples of @ are asymp-
totically unbiased, e.g. via a polynomial step size decay
An = a(n+1)~7, with decay rate v and initial learning rate
a . Hence, the increased computational efficiency comes at
the cost of generating a biased estimate of p(6|D, M) for
a finite number of update steps.

To assess the quality of uncertainty estimates from SG-
MCMC schemes, we learn a single-site CG water model
parametrized by the control points of a cubic spline via
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Fig. 1. Mean and credible interval of the predicted radial
(RDF, a) and angular distribution function (ADF, b),
together with the atomistic ground truth.

force-matching (Noid et al. (2008)). The ground-truth data
consisting of 10° de-correlated states are obtained from
a simulation of 905 water molecules in a cubic box of
side length 3 nm with the atomistic SPC/FW (Wu et al.
(2006)) water model at a temperature 7' = 300 K. We
choose a uniform prior and assume a Gaussian likelihood
with identity covariance matrix, where the variance o2
is treated as a learnable model parameter. The spline
control points are initialized to the corresponding values
of the potential of mean force (Reith et al. (2003)) and
o to 200 kJ / (mol nm). We approximate the posterior
distribution via the stochastic gradient Langevin dynamics
method (Welling and Teh (2011)) with the polynomial
learning rate schedule (a = 1078, v = 0.33). We train
for 5 epochs with a mini-batch size of 5 and generate 1000
MCMC samples after the learning rate is reduced below
a=6-10"10

3. RESULTS

We evaluate the quality of the learned potential based
on predicted observables by reference to the atomistic
ground-truth. The mean predicted radial distribution
function (RDF) deviates from the atomistic reference (Fig.
1 a), which is in line with tabulated 2-body potentials
parametrized via maximum likelihood estimation (Scherer
and Andrienko (2018)). The deviation results from the fact
that the 2-body tabulated potential is a weak approxima-
tion to the distinct 3-body properties of water (Scherer and
Andrienko (2018)). Importantly, the credible interval con-
tains most of the ground truth RDF such that the extent
of the deviation can be anticipated by practitioners. By
contrast, the mean predicted angular distribution function
(ADF) fails to reproduce the atomistic reference, but the
narrow credible interval suggests high confidence in the
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incorrect prediction (Fig. 1 b).

Note that this UQ failure is not caused by a sub-optimal
approximation of the true p(6|D, M) from the SG-MCMC
scheme, but rather stems from the (implicit) condition-
ing of Bayes’ theorem on the model M: By definition,
p(0)D, M) describes the posterior probability of all possi-
ble parameters 8 of M. Effects that cannot be captured by
any 6 cannot be represented in the uncertainty prediction.
In this particular example, the ADF is predominantly
determined by 3-body forces which cannot be represented
by 6 in a 2-body potential. Hence, interpretation of results
from Bayesian UQ critically depends on the employed M.

4. CONCLUSION

Our results suggest that SG-MCMC methods could pro-
mote the application of UQ in MD simulations by reducing
the computational burden of full-batch MCMC methods.
However, further studies including investigation of the
merits of more advanced SG-MCMC schemes, the number
of necessary MCMC samples for reliable UQ results, as
well as applying Bayesian UQ to highly expressive models
such as NN potentials are required before obtained uncer-
tainty estimates can be trusted in practice.
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