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Introduction: This paper shows that a tree-like network
with damage can be modeled as the product of a fractional-
order (FO) nominal plant and a FO multiplicative distur-
bance, which is well structured and completely character-
ized by the damage amount at each damaged component.
Such way of modeling brings insight about that damaged
network’s behavior and helps us design robust controllers
under uncertain damages and identify the damage.

We study the network in Fig. 1, motivated by a viscoelastic
model from Heymans and Bauwens (1994) and also studied
in Goodwine (2014); Leyden (2018); Mayes (2012). Con-
sidering only integer-order calculus, that system can only
be modeled by an infinite continued fraction. Existing lit-
erature, e.g., Goodwine (2014), shows that, if FO calculus
is allowed, then the undamaged version of that system is
exactly half order which has a concise representation. This
paper shows that for such a damaged network, its transfer
function can still be written in a structured way.
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Fig. 1. The tree model.

It can be shown that the transfer function G̃(s) from the
input force, f , to the distance between x1,1 and xlast of
such model satisfies the recurrence formula given by

G̃(s) =
1

1

1

k̃
+ G̃U (s)

+
1

1

b̃s
+ G̃L(s)

. (1)

Moving one generation deeper, the transfer function from
the input force to the distance between x2,1 and xlast is
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Fig. 2. An illustration about recurrence formula, Eq. (1).

G̃U (s); similarly, G̃L(s) is that between x2,2 and xlast.
The spring constant connecting x1,1 to x2,1 is denoted by

k̃, and b̃ denotes the damper constant connecting x1,1 to
x2,2. Fig. 2 illustrates the meaning of above elements.

We call the tree model undamaged when all spring and
all damper constants are same, that is kg,n = k and
bg,n = b for all g = 1, 2, . . . and n = 1, 2, . . . , 2g−1. For each
damage case, we assume that there is either only one spring
or only one damper having a constant different from its
corresponding undamaged value. We further assume that
the damaged spring (damper) constant kd (bd) is defined
by a factor of ϵ, i.e., kd = ϵk or bd = ϵb, where ϵ is called
the damage amount and 0 < ϵ < 1.

As shown in Goodwine (2014) and as is well-known, for the
undamaged case, the transfer function from the input force
f(t) to the relative distance between x1,1(t) and xlast(t) for
the undamaged tree is given by

G∞(s) =
X1,1(s)−Xlast(s)

F (s)
=

1√
kbs

. (2)

Eq. (1) can be viewed as a mapping from (G̃U (s), G̃L(s))

to G̃(s), which builds up the tree generation by generation
regardless of whether the model is undamaged or damaged.

The existing literature outlined above shows that the
undamaged tree’s transfer function G∞(s) in Eq. (2)

can be obtained by replacing (G̃(s), G̃U (s), G̃L(s), k̃, b̃)
with (G∞(s), G∞(s), G∞(s), k, b) in Eq. (1), i.e., the
undamaged transfer function between x1,1 and xlast is the
same as the one between x2,1 and xlast, and also the one
between x2,2 and xlast.

In a similar manner and using self-similarity, every damage
case can also be computed by using Eq. (1) repeatedly.
However, repeatedly applying the above process will result
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Fig. 3. Half-order ZP locus when the damage occurs at the
first generation and ϵ ∈ [0, 1]. When ϵ = 1, all half-

order ZP are at −
√

k/b. (For this plot, k = 2 and
b = 1.) Left: l = k1,1. Right: l = b1,1.

in a very complicated transfer function. In fact, both

transfer functions G̃U (s) and G̃L(s) have the same formula
as Eq. (1) due to the self-similarity. Therefore, with
integer-order calculus, the transfer function for the entire
tree is a complicated infinite continued fraction.

Main Result: The main result of this work is that the
damaged tree’s transfer function can be written as

Gl(s) = G∞(s)∆l(s),

where the disturbance ∆l(s) is well structured and can
be determined completely by the damage amount ϵ of a
damaged component l. Those two features are the key
points which make such way of modeling useful in different
applications. See Ni (2021) for a complete analysis.

Claim: For each damage case outlined above, its damaged
transfer function Gl(s) from the input force to the relative
distance between x1,1 and xlast can be modeled as a FO
nominal plant with a FO multiplicative disturbance,

Gl(s) = G∞(s)∆l(s), (3)

where G∞(s) is the undamaged transfer function defined
by Eq. (2). Moreover, ∆(s) is structured as

∆l(s) =
N(s)

D(s)
=

∏2g
j=1(s

1
2 + zj)∏2g

j=1(s
1
2 + pj)

(4)

where g denotes the g-th generation at which the damaged
component l locates, and −zj and −pj are called as half-

order zeros and poles. In addition, z1 is fixed at
√
k/b

regardless of the damage location or amount ϵ.

Claim: ∆l(s) Depends on ϵ only at each l.

When the damage happens at the first generation, the
relation between ∆l(s) and ϵ can be expressed in closed-
form. Fig. 3 shows the locus for those half-order zeros and
poles when the damage happens at the first generation,
and when the damage amount ϵ varies from 1 (no damage)
to 0 (complete damage).

For all the other damage locations deeper into the network
than the first generation, the relation between ∆l(s) and
ϵ cannot be easily expressed in a closed form. However,we
can still obtain those locus by using a nonlinear equation
solver. Fig. 4 shows the locus for those half-order zeros and
poles, which are built up numerically, when the damage
happens at the second generation with damage ϵ ∈ [0, 1].

Since it is possible to get this kind of locus for each
damaged component, ∆l(s) clearly has only one degree
of freedom, namely ϵ, at each damaged component l. That
is, as long as either one pole or one zero (other than −z1
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Fig. 4. Half-order ZP locus when the damage occurs at the
second generation, and ϵ ∈ [1, 0]. When ϵ = 1, all half-

order zeros and poles are at −
√
k/b. (For this plot,

k = 2 and b = 1.) Upper left: l = k2,1. Upper right:
l = k2,2. Lower left: l = b2,1. Lower right: l = b2,2.

which always stays at −
√
k/b) is known, all the other

zeros and poles can be determined through ϵ, thus ∆l(s)
is determined thereby.

Utility of These Results: Because the disturbance
∆l(s) is completely determined by the damage amount ϵ
of a damaged component l, we can use the above result
to identify a damage tree network’s damage amount ϵ.
Specifically, we can formulate that damage identification
problem as an optimization problem. For instance, when
a damage occurs at k2,1, given a frequency domain mea-
surement ∆k2,1

(s), we can identify its damage amount ϵ
by solving the following optimization problem,

min
ϵ

∑ ∥∆̃k2,1(s)−∆k2,1(s)∥
∥∆k2,1

(s)∥

where ∆̃k2,1
(s) =

∏4
j=1(s

1
2 + zj)∏4

j=1(s
1
2 + pj)

and zj = zj(ϵ), pj = pj(ϵ) for all j = 1, . . . , 4. The
functions zj(ϵ) and pj(ϵ) are already known by fitting the
ZP locus as shown in Fig. 4. We have successfully identified
the damage amount ϵ by using fmincon() to solve the
above optimization problem.

Applications:

(1) Providing insights about how damage affects the
network.

(2) Robust control.
(3) Identification of samage for a damaged network.
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