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1. INTRODUCTION

Recently, data-driven system identification using sparse re-
gression with L1 regularisation solved the problem to iden-
tify simultaneously functional structure and the related
parameter estimates [Brunton et al. (2016)]. Based on this
open-loop framework, the objectives of this paper are to
theoretically examine the performance of the data-driven
nonlinear system identification using a sequential thresh-
old least-squares (STLSQ) algorithm based on sparse re-
gression with L1 regularisation for closed-loop processes.
Additionally, the effect of normalisation on the proposed
method is discussed. In order to evaluate the method, a
CSTR model with a PI controller to control the reactor
temperature is chosen as benchmark system and the model
is identified using the proposed framework. Finally, the
validation of the proposed method using simulation results
are presented.

2. SPARSE IDENTIFICATION OF NONLINEAR
DYNAMICS

The sparse identification framework seeks to identify dy-
namic systems in the form of

dx(t)
dt

= f(x(t)), x(t0) = x0, (1)

describing the temporal behaviour of the state vector
x(t) ∈ Rn. Data-driven system identification consists of
the identification of nonlinear candidates using the prop-
erties of dictionary learning and regularisation [Brunton
et al. (2016)]. The resulting regression problem can be
written as:

min
Ξ

∥Θ(X) · Ξ − Ẋ∥2 + λ · ∥Ξ∥1. (2)

where the output of the regression is the matrix Ξ ∈
R(

∑
di)×n, i = 1, 2, .., H, which contains the model coef-

ficients for each candidate function from the dictionary
function Θ(X) fit to the data matrix X ∈ Rm×n and
its derivative obtained from the process Ẋ ∈ Rm×n.
λ ∈ R denotes the regularisation parameter. In order
to improve the optimisation performance, [Brunton et al.
(2016), Wang et al. (2011)] recommend the normalisation
of the dictionary function. The idea can be transferred
to a closed-loop identification by adding a manipulated

variable into the regression problem. Reformulating the
regression problem in an augmented state-space form can
account for PI controllers commonly used in practical
applications. The resulting state-space form is

dx

dt
= a(x) + Kp · (w − y) + KI · z, (3)

dz

dt
= w − y, (4)

y = x. (5)
where x ∈ R is a single state, y ∈ R is the system output,
w ∈ R is the reference value to which the system should
be controlled, z ∈ R is the auxiliary state and Kp ∈ R and
KI ∈ R are, respectively, the proportional and integral
gains.

3. SIMULATION AND RESULTS

In order to evaluate the performance of the proposed solu-
tion in a continuous time environment, a CSTR model was
used. The state-space model consists of the mass balance,
the energy balance and the PI controller structure. The
nonlinear part of the model is represented by the reaction
kinetics containing the Arrhenius equation. The model
parameters are given in Table 1 and the model is

dcA

dt
= q

V
· (cAf − cA) − rA

dT

dt
= q

V
· (Tf − T ) − ∆HR

(ρ · cp) · rA+
U · A

(V · ρ · cp) · (Tc − T ) + PI

dz

dt
= Tref − T

rA = k0 · e−E/R·T · c2
A

PI = Kp · (Tref − T ) + KI · z.

(6)

where T ∈ R is the reactor temperature, cA ∈ R is the con-
centration of the considered component, z ∈ R describes
the integrated control error state and PI ∈ R is the PI-
controller structure. Parameters and initial conditions of
the model are shown in Table 1.
The model equations were implemented and solved in
Python to obtain data for the identification. The iden-
tification was performed with a threshold of λ = 0.9,
ten iterations in the STLSQ algorithm, and a normalised
dictionary. The resulting coefficient matrix containing the
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Fig. 1. Result of sparse identification with nonlinear dy-
namics applied to the CSTR model with PI tempera-
ture controller described by Equation 6.

candidate functions as rows and the differential equations
as columns is shown in Figure 1. It can be observed
that the appropriate candidate functions representing the
actual dynamics were identified and a sparse solution was
obtained. The candidate functions and coefficients chosen
by the identification are the same as specified in the in-
put model (see Table 1). The coefficient of determination
R2 = 1 confirms that the resulting model is appropriate.
To produce different dynamical responses of the model and
evaluate the effect of normalisation, the initial conditions
of the CSTR model with PI controller were randomly
varied to produce 51 different data sets for identification.
Figure 2 shows the number of nonzero coefficients in the
identified model equations as a function of the initial
conditions. When no normalisation is performed (red tri-
angles), none of the models has the desired nine nonzero
coefficients, while with normalisation (blue triangles), the
desired model is found in most cases. It was shown that,
with respect to the sparsity of the model, the normalisation
has a significant effect and improves the identification.
Furthermore, it is assumed that the normalisation of the
dictionary improves the predictive capacity of the models.

Table 1. Parameters and initial conditions of
the model

q Volumetric Flowrate (5 m3/h)
V Reactor Volume (1 m3)
ρ Density of Mixture (1000 kg/m3)
cp Heat Capacity of Mixture (0.231 kJ/(kg · K))

∆HR Heat of Reaction (−1.15 · 104 kJ/kmol)
E Activation Energy (50000 kJ/kmol)
R Gas Constant (8.314 kJ/(kmol · K))
k0 Reaction Constant (8.46 · 106 m3/(kmol · h))
U Heat Transfer Coeff. (5000 kJ/(m3 · h))
A Heat Transfer Area (1 m3)
Tf Feed Temperature (350 K)
cAf Feed Concentration Comp. A (4 kmol/m3)
Tc Cooling Jacket Temperature (395 K)

Tref Controller Reference Temperature (380 K)
Kp Controller Proportional Gain (10 1/h)
KI Controller Integral Gain (180 1/h2)
cA0 Initial Concentration Comp. A (2.2 kmol/m3)
T0 Initial Temperature (325 K)
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Fig. 2. Number of nonzero coefficients of the 51 identified
models as a function of the initial conditions cA0, T0.

4. CONCLUSION

The effect of normalising the dictionary of candidate func-
tions was evaluated with 51 data sets obtained from vary-
ing the initial conditions of the model. It was shown that
both process dynamics and controller dynamics can be
identified accurately (R2 = 1). The normalisation of the
dictionary was shown to be beneficial to promote sparsity.
In future work, the proposed framework could be tested
with data coming from black-box models, e.g., from the
process simulation environment UniSim Design. Also, real
process data could be used or additional Gaussian white
noise could be added to the input data. In order to deter-
mine the performance limit of the proposed framework, lo-
cal differentiation methods, e.g., the Savitzky-Golay filter,
or global differentiation methods, e.g., the total variation
derivative, could be evaluated. Furthermore, the frame-
work could be extended to also allow the identification of
the differential part of a proportional-integral-differential
(PID) controller and other controller structures.
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