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1. INTRODUCTION

Traditional chemical kinetic models use ordinary differen-
tial equations (ODEs) to predict the concentrations of the
involved molecule types (Gillespie (1992)). The evolution
of the corresponding probability distribution is given by
the chemical master equation (CME) which, in principle,
can be solved by numerical integration. Unfortunately, the
computational cost grows exponentially with the number
of species, due to the fact that the system states must
be labeled explicitly to cast the CME into a ODE. A
framework for performing Bayesian inference tasks for the
parameter-dependent CME is suggested, by exploiting the
so called tensor-train (TT) decomposition to approximate
the joint distribution over the CME states and parameters
(see Ion et al. (2021)). For that purpose, we construct an
explicit representation of the evolution operator in the
TT format and show that it can be constructed with-
out ever assembling the corresponding matrix. The TT
format has the advantage that the storage requirement
scales linearly with respect to the number of dimensions,
while at the same time being a numerically robust tensor
decomposition. To that end, we combine the state space
and the parameter space into a higher-dimensional tensor-
product space. The parameter dependence is expressed by
means of a B-spline basis. Since typically every reaction is
governed by an individual rate constant, the parameters
can be seamlessly included in the tensor representation,
thus allowing for efficiently solving the joint system. In
practice, however, the system parameters are often un-
known. Therefore, we develop a framework for filtering,
smoothing, and parameter inference based on the efficient
TT representation of the joint system.

2. TENSOR-TRAIN DECOMPOSITION FOR THE
CHEMICAL MASTER EQUATION

2.1 Chemical master equation

The chemical master equation describes the time evolution
of the probability mass function (PMF) of well-mixed
reaction system with d species (Gillespie (1992)). After
the state space truncation of the PMF p to a n1×· · ·×nd

tensor, the CME is represented as a large linear system of
ODEs

dp(t)

dt
= Ap(t),

where A is a tensor operator with size (n1 × · · · × nd) ×
(n1 × · · · × nd). Parameters that govern the reactions can
be included in the framework, leading to the following
parameter dependent CME

dp(t,θ)

dt
= A (θ)p(t,θ). (1)

For the joint state-parameter density together with the
time dependency, a tensor-product basis representation in
used:

pi (t,θ) ≈
∑
j

∑
l

piljbj(t)Ll(θ), (2)

where p is d + Np + 1 dimensional tensor, {bj}j is the
basis for the time dependency (Chebyshev polynomials)
and {Ll}l is a tensor-product basis for the parameter to
accommodate parameter dependency (product of univari-
ate B-splines). Galerkin projection is then used to derive
an extended multilinear system for p. Since the unknown p
is high-dimensional, the storage requirements grow expo-
nentially and therefore compression schemes are employed
for the unknown p and the multilinear system.

2.2 Tensor-trains

An array x of shape n1 × · · · × nd is said to be in the TT
format if it can be elementwise written as

xi =
R1∑

r1=1

R2∑
r2=1

· · ·
Rd−1∑

rd−1=1

g
(1)
1i1r1

g
(2)
r1i2r2

· · · g(d)
rd−1id1

, (3)

where the three-dimensional tensors g(k) are called the
TT-cores and R = (1, R1, ..., Rd−1, 1) are called the TT-
ranks (Oseledets (2011) provides a detailed look). The
storage complexity becomes linear with respect to d and
once the tensors are converted in the TT-format, the ba-
sic operations (elementwise addition, multiplication, sum-
ming over indices) can be efficiently performed without
building the full d-dimensional object. The construction of
a low-rank TT-decomposition provides an error bound and
rank reduction can be also performed within a given ac-
curacy (see Oseledets (2011) for more details). In addition
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Fig. 1. Noisy observation sample for the SEIQR model
(sample size is 45).

to that, multilinear systems can be solved directly in the
TT-format using optimization based methods (see Dolgov
and Savostyanov (2014)). The CME operator A presented
in the previous section can be directly represented in the
TT-format and the multilinear system arising from the
Galerkin projection can be as well solved in the TT-format.

2.3 Inference tasks

Given a number of noisy observations of a system governed
by a CME with unknown governing parameters, one can
be interested in finding those parameters. A probabilistic
description of the distribution over the parameter space
(called posterior) can be obtained using Bayes rule. As
presented in Ion et al. (2021), updating the posterior
implies solving the CME and constructing the likelihood
(conditional probability of observing the data given the
underlying state of the system). Both of the steps are
efficiently performed using the TT-format without being
affected by the curse of dimensionality, since both the
observation model and the CME operator can be com-
puted directly in the TT-format. A prior PDF over the
parameters can be included in the framework.

3. RESULTS

Numerical experiments have been performed to showcase
the advantages of the proposed framework in terms of
accuracy and computational efficiency Ion et al. (2021).
Among them, we present here only he SEIQR model. It
has 5 species: susceptible (S), exposed (E), infected (I),
quarantined (Q) and recovered (R) involved in 9 reactions
with 4 parameters assumed as unknown. From a sample
path, noisy observations are generated (see Fig. 1) and
the TT CME solver is used to infer the parameters with
the dimension of the parameter space basis is 64 for every
parameter. Marginals of the posterior are shown in Fig.
2, comparing the obtained posterior with the prior (green
dashed line) and also displaying the exact parameter.

The execution time for a TT-solver is ≈ 55 minutes
with a maximum posterior size in the QTT-format of
≈ 30 MB. As a comparison, the chosen state truncation

Fig. 2. Posterior marginal distributions for the four un-
known reaction rates of the SEIQR model. The exact
parameters are marked with the red dashed lines and
the prior with green dashed lines.

of (128, 64, 64, 32, 32) would require ≈ 4.2 GB only for
storing the state for one parameter realization. The storage
complexity for the parameter-dependent CME operator in
the QTT format is ≈ 200 KB.

4. CONCLUSION

We presented a method based on the TT decomposition
to solve the CME, either in its standard form or including
parameter dependencies, and approximate the joint distri-
bution over the state-parameter space, including the time
dependency as well. Using the considered TT-framework,
inference tasks such as parameter identification can be
performed accurately and efficiently.
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