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Abstract: Creating behavioral models for radio frequency (RF) devices is a challenging task.
Most approaches require a substantial prior knowledge of the physical structure in order to be
able to generate suitable mathematical models for the desired characteristics. However, since
it is usually not attractive for manufacturers to pass on extensive knowledge about internal
components to third parties, one has to rely mainly on black- or gray-box models. An approach is
to fit a parameterized model based on representative measurement data, following the example of
the Hammerstein-Wiener models. With this approach, only simple linear least squares problems
have to be solved and special structures encourage the use of efficient solution methods. In
this paper, the general fitting procedure will be discussed and suggestions for successful device
modeling will be provided
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1. INTRODUCTION

In order to integrate various new components from dif-
ferent manufacturers into device simulators, the dynamic
behavior of the component under defined operating con-
ditions must be determined as precisely as possible. How-
ever, since the physical structure or other internal compo-
nents are rarely published by the respective semiconductor
manufacturers for such purposes, the simulation software
usually relies on the models they provide. If these do not
exist at all, or only for special simulators, one is faced with
a problem. The only remaining option is to create a gray-
box model, which is associated with various challenges.

2. HAMMERSTEIN-WIENER MODELS

The main challenge one is facing when creating a gray-
box model is the choice of an appropriate structure. Here
a variety of possible models may apply, ranging from
classical RF approaches such as the X-parameter model or
even AI models such as neural networks. In this paper, the
focus is on a model that is composed of classical elements
of signal and system theory, the so-called Hammerstein-
Wiener model, and its possible application in the field of
RF devices.

Fig. 1. Hammerstein-Wiener Block Diagram

2.1 Structural Overview

As displayed in Figure 1, a Hammerstein-Wiener model
consists of a series connection of an arbitrary non-linear
mapping function f1(·), a discrete LTI system G(q) with
the delay operator q−1 and another non-linear function

f2(·). We assume that all of these sub-blocks can be
described with a set of parameters which may be adapted
to fit the input and output measurement data of an actual
RF device. Since the Hammerstein-Wiener model is a
discrete-time system, these must be available in the form
of time domain samples

Y = (y1 · · · yN ) (1)

U = (u1 · · ·uN )

where N is the number of measurement samples. In the
following considerations we assume ut, yt etc. to be a single
sample out of a given measurement series. Based on the
block diagram in Figure 1, the Hammerstein-Wiener model
is given by

vt = f1(ut) (2)

wt = G(q)vt + et
yt = f2(wt) = f2 [G(q)f1(ut) + et]

where f1(·) and f2(·) are set to be continuous, f2(·) is
furthermore monotone and invertible and wt is disturbed
by a sample et of a stationary stochastic process with zero
mean. G(q) is an arbitrary transfer function containing the
delay operator q−1. The nonlinear functions f1 and f2 are
approximated with cubic splines as defined in Zhu (2002)

f1(ut) =

m1−2∑
k=1

αk|ut − ũk|3 + αm1−1 + αm1
ut (3)

f2(wt) =

m2−2∑
k=1

βk|wt − w̃k|3 + βm2−1 + βm2wt

where ũk and w̃k represent the spline knot sequences. It
is established practice to select the spline knots according
to the dynamic range of the function argument. However,
this formulation cannot be applied as it is, since wt can not
be measured. It is replaced in the course of this section.
For the linear time-invariant system G(q) we select a
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Box-Jenkins model, which may be replaced with a higher
order auto-regressive model with exogenous input (ARX)
of order n that reads

A(q)wt = B(q)vt + et (4)

wt = B1vt−1 + ...+Bnvt−n −A1wt−1 − ...−Anwt−n

Since the stochastic process e is used to approximate
the model error, the objective function V (Θ, Z) for the
upcoming optimization is given by

et = A(q)f−12 (yt)−B(q)f1(ut) (5)

f2
−1(yt) =

m2−2∑
k=1

γ|yt − ỹk|3 + γm2−1 + γm2yt

Z = [u1, ..., uN , y1, ..., yN ] ,Θ = [A1, ..., B1, ..., γ1, ..., α1, ...]

V (Θ, Z) =
1

N

N∑
t=1

e2t

where the inverse of f2 is approximated with another
spline model with measurable input dynamics for yt and
Θ contains the parameters of the Hammerstein-Wiener
model.

2.2 Optimization Process

The starting point for the following iterative optimization
procedure also defined in Zhu (2002) is based on a small-
signal analysis of a non-linear device. With low dynamic
ranges, these usually behave almost linearly, which simpli-
fies an initial estimate of the linear ARX model. For this
purpose, the following optimization criterion is defined

N∑
t=1

(
A(0)(q)f

−1
2 (0)(yt)−B(0)(q)f1(0)(ut)

)2
→ min (6)

where A(0)(q) and B(0)(q) represent the initial ARX co-

efficients. The non-linear functions f1(·) and f−12 (·) are
set as identity for this initial estimate. For the subsequent
optimization the following steps are repeated until a target
norm has been reached. Therefore we are introducing an
iteration index i and mark fixed components with the hat-
notation

Step 1: Determine the spline coefficients αk for f1 by
solving a linear least square problem for fixed Â(i)(q),

B̂(i)(q) and f̂−12(i)(yt)

N∑
t=1

(
Â(i)(q)f̂

−1
2(i)(yt)− B̂(i)(q)f1(i+1)(ut)

)2
→ min

Step 2: Determine the spline coefficients γk for f−12 by solv-

ing a linear least square problem, where Â(i)(q), B̂(i)(q)

and f̂1(i+1) [ut] are fixed

N∑
t=1

(
Â(i)(q)f2

−1
(i+1)(yt)− B̂(i)(q)f̂1(i+1)(ut)

)2
→ min

Step 3: The last part of the optimization procedure is
analogous to the initial ARX step but with the previously
computed splines for f1(ut) and f−12 (yt). Then one solves
the least squares problem

N∑
t=1

(
A(i+1)(q)f̂2

−1
(i+1)(yt)−B(i+1)(q)f̂1(i+1)(ut)

)2
→ min

2.3 Modifications

The original idea of this optimization procedure originates
from Zhu (2002), but is associated with several limita-
tions there. For example, it is assumed that ut, yt and
the Hammerstein-Wiener model parameters each repre-
sent scalar values. It is therefore only possible to model
Single-Input Single-Output (SISO) systems with this ap-
proach. However, since this assumption is inadequate for
RF devices with multiple ports, a notation for modeling
Multiple-Input Multiple-Output (MIMO) systems is pro-
posed in the following where ut ∈ IRK and yt ∈ IRL. There
are various possibilities to modify the given structure
of the Hammerstein-Wiener model so that multivariate
data can be approximated. One option are multivariate
splines, but a simpler solution is a higher-dimensional
ARX model in which the coefficients are represented by
matrices. A1...An ∈ IRLxK and B1...Bn ∈ IRLxK therefore
applies. Then it is sufficient to apply scalar spline functions
to every element within ut and wt similarly to the scalar
case in Section 2.2. Another improvement is the use of
b-Splines, where the order can be defined flexibly.

3. NUMERICAL TEST

The variants of the Hammerstein-Wiener models presented
here have so far proven themselves in practical use, al-
though the proof of convergence is still work in progress.
In the course of this work, mainly models from the Cadence
AWR Design Environment were used for verification. An
example of a frequency-dependent non-linear common
emitter amplifier with a two-tone signal at the input port is
provided in Figure 2. As expected, the actual measurement
data show attenuated artifacts around the harmonics of
the input signal (100 kHz), which a Hammerstein-Wiener
model (n = 3, m1 = m2 = 11) approximates accurately.
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Fig. 2. Scattered Wave Approximation at Port 1
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