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1. INTRODUCTION

The demand of mobile platforms for the motion in a
constrained spaces in complex environments or personal
high-maneuverability robots for disabled persons has led
to the invention of new types of wheels. Beginning from
the first patent received by Grabowezky in USA in 1919,
engineers started developing wheels that could move not
only in their own plane but, for example, perpendicularly
to this plane. A key issue for the effective usage of these
wheels and for the optimal control of the entire mobile
system is the understanding of the physical interaction
between the wheels and the environment. For this reason,
the mechanics of motion with such wheels draws attention
of both researchers and engineers (Campion et al. (1996),
Ostrowski and Burdick (1998) and others). The motion
of a platform with four Mecanum wheels is investigated
in Zeidis and Zimmermann (2019) within the framework
of non-holonomic mechanics. In this paper the dynamic
equations of a wheel pair that contain two Mecanum
wheels with controllable orientation of the rollers during
motion is considered. Such a system consists of two co-
axial disks with rollers attached to them as shown in Fig. 3.
When one of the disks turns with respect to the other disk,
the angle of inclination of the rollers relative to the wheel’s
plane changes. The relative rotation of the disks can be
produced by a separate actuator, which allows choosing
an optimal orientation of the rollers for a given trajectory.

2. MATHEMATICAL PROBLEM

The Mecanum wheel pair moves so that all its wheels
have permanent contact with the underlying plane. The
distance between the centers of the wheels is 2 l. The
coordinates of the center of mass C in a fixed coordinate
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Fig. 1. Prototype of a Mecanum wheel with controllable
angle of the rollers

system XOY are xc, yc , the angle formed by the axis that
is orthogonal to the axis of wheel pair with axis OX we
denote by ψ. The angles of rotation of the wheels relative
to the axes that are perpendicular to the planes of the
respective wheels and pass through their centers are ϕi,
and the time-dependent torques applied to the wheels are
Mi(t) (i = 1 , 2).

A Mecanum wheel is a wheel with rollers fixed on its outer
rim. The axis of each of the rollers forms the same angle
δ (0◦ ≤ δ < 90◦) with the plane of the wheel. Each roller
may rotate freely about its axis, while the wheel may roll
on the roller. We will model a Mecanum wheel by a thin
disk of radius R, see Fig. 2. Let V K be the velocity of
the wheel’s center K, γ be the unit vector of the roller’s
axis, and ϕ be the angle of rotation of the wheel about the
axis that is perpendicular to the wheel’s plane and passes
through its center. The wheels move without slip, which
implies the constraint (Nejmark and Fufaev (1972))

V K · γ = R ϕ̇ cos δ . (1)
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Fig. 2. Mecanum wheel pair

We introduce a wheel pair-attached coordinate system
ξηζ with origin at the center of mass C of the axis between
the wheel pair (Fig. 2). We point axis Cξ orthogonal to
the axis of the wheel pair, axis Cη along the axis of the
wheel pair, and axis Cζ vertically upward. Denote by VCξ
and VCη the projections of the velocity of the center of
mass onto the movable axes Cξ and Cη, respectively, and
represent expression (1) as follows:

VCξ cos δ1 − VCη sin δ1 − l cos δ1 ψ̇ = R cos δ1 ϕ̇1 ,

VCξ cos δ2 + VCη sin δ2 + l cos δ2 ψ̇ = R cos δ2 ϕ̇2 .
(2)

Here the angles δ1 = δ1(t), δ2 = δ2(t) are given functions
of time t. Then the components ẋc and ẏc of the velocity
vector of the center of mass in the fixed reference frame
are as follows:

ẋc = VCξ cosψ − VCη sinψ,

ẏc = VCξ sinψ + VCη cosψ.
(3)

The configuration of the mechanical system is defined by
five generalized coordinates, q1 = ϕ1, q2 = ϕ2, q3 = ψ,
q4 = xc, and q5 = yc. Two generalized velocities can be
expressed in terms of the remaining generalized velocities
by using the non-holonomic constraint equations (3). The
coefficients in these equations be functions of only the
independent coordinates and time t. Chaplygin’s systems
(Papastavridis (2002), Zimmermann et al. (2009)) are
usually defined as mechanical systems with non-holonomic
time-invariant constraints that are linear with respect to
the generalized velocities and can be reduced to the form
in which the dependent generalized velocities are expressed
in terms of the independent generalized velocities in such
a way that the coefficients of the independent generalized
velocities are functions only of the independent generalized
coordinates. In this case, the dynamic equations can be
represented in a special form that are called Chaplygin’s
equations. Chaplygin’s equations form a closed system
that does not involve the constraint equations, as it is
the case for systems with holonomic constraints. This
remarkable property remains valid for the systems with
linear time-varying constraints if the coefficients of the
independent generalized velocities depend only on the
independent generalized coordinates and on the time.

Fig. 3 depicts the time histories xc(t) and yc(t) of the
coordinates of the wheel pair center of mass for the case
where the rollers inclination angle changes periodically
with a period of 2 s first from 5◦ to 85◦ and then from 85◦

to 5◦ (curves 1) and for the case where the roller inclination
angle is constant and is equal to 45◦ (curves 2).
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Fig. 3. The time histories of the xc- and yc-coordinates of
the center of mass of the wheel pair for the cases of
changing and constant inclination angle of the rollers

3. CONCLUSION

The equations of motion of a wheel pair with time vary-
ing change in the angle of inclination of rollers to the
wheel’s plane are presented. These equations can be re-
garded as a modification of Chaplygin’s equations for
non-holonomic systems with time-varying constraints. The
modified equations contain additional terms as compared
with the classical equations for the systems with time
invariant constraints. The main property of Chaplygin’s
equations is that the dynamic equations can be integrated
irrespective of the constraint equations. This property
is retained for the modified equations. The ability of a
controllable inclination angle of the rollers of the Mecanum
wheels during motion enhances the kinematic possibilities
of mobile robots with such wheel pairs.
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