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1. INTRODUCTION

A mobile system consisting of two interacting bodies
regarded as point masses is a simplest model of a worm-
like limbless crawler. The interaction force plays the role
of a control variable. This system can move progressively
on a rough plane with Coulomb’s friction acting between
each of the bodies and the plane. On a horizontal plane, if
both bodies did not move at the initial time instant, this
system can move only along the line that connected the
bodies at the initial time instant. This is the case, because
no lateral impressed forces act on the system. The motion
of a two-body crawling system along a straight line on a
horizontal plane was studied by Chernousko (2002) and
Chernousko (2011). The situation changes for an inclined
plane, since the gravity force has a projection onto the
direction orthogonal to the line that connects the bodies,
provided that both bodies do not lie on the common line of
maximum slope. The motion of a two-body crawler on an
inclined plane along a line of maximum slope is addressed
by Figurina (2018). The aim of this study is to show that
the two-body crawler can, in principle, be driven from any
initial state of rest to an arbitrarily small neighborhood of
any terminal state of rest on an inclined plane, if at the
initial time instant the bodies do not lie on the common
line of maximal slope.

2. STATEMENT OF THE PROBLEM

Consider a system of two interacting point bodies of
masses m and M , m < M , on a rough inclined plane.
Let k be the coefficients of Coulomb’s friction between the
bodies and the plane, γ the inclination angle of the plane
(0 < γ < π/2), F the interaction force applied by body M
to body m. We assume that from a state in which both
bodies lie on the common line of maximum slope and do
not move, body m can be moved upward along this line,
with body M remaining at rest. This assumption implies
the inequality

tan γ ≤ k
M −m

M +m
. (1)
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Let at the initial time instant both bodies be not moving
and the bodies do not lie on the common line of maximum
slope. The issue we are interested in is whether the system
can be transferred into an arbitrary terminal state of rest
on the plane. We investigate this possibility in principle
and do not impose constraints on the control force and
the relative displacement of the bodies. In particular, the
impulsive interaction force F that changes instantaneously
the distance between the bodies is allowed and, moreover,
the bodies are allowed to pass through each other. It will be
shown that such a transfer can be performed by combining
infinitely slow (quasistatic) motions of body m and fast
motions in which the distance between the bodies changes
virtually instantaneously.

3. QUASISTATIC MOTIONS

Consider the quasistatic motion of the system, i.e., the
slow motions that can be regarded as a continuous se-
quence of equilibria. As follows from inequality (1), in the
quasistatic mode, only body m can move and body M
remains at rest. Introduce in the inclined plane the coor-
dinate system Mxy (fixed for the case of the quasistatic
motion), the y-axis of which points upward along the line
of maximum slope (Fig.1).

Fig. 1. Two-body system on an inclined plane.

Let r and α denote the polar coordinates of body m in the
inclined plane, related to the pole M and the polar axis
Mx. The trajectories of the quasistatic motion of body m
for α ∈ (−π/2, π/2) are defined by the equation

dr

dα
= ±r

√
1− a2 cos2 α

a cosα
, a =

tan γ

k
< 1, (2)

The minus sign on the right-hand side of Eq. (2) cor-
responds to the repulsive motion for which the force F,
applied to body m is directed along the vector

−−→
Mm, and

the plus sign corresponds to the attractive motion.
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Let r±(α, α0, r0) denote the solution of Eq. (2) subject
to the initial conditions r(α0) = r0. The function r+
(r−) monotonically increases (decreases) as α increases in
the interval (−π/2, π/2). The function r+ possesses the
following properties:

lim
α→π/2

r+(α) cosα = ∞, lim
α→−π/2

r+(α) = 0.

The trajectories r− are symmetric to r+ about the axis
Mx, i.e.,

r−(α, α0, r0) = r+(−α,−α0, r0).

The quasistatic trajectories of bodym are plotted in Fig. 2.
It can be shown that bodym can move quasistatically from
the point (α0, r0) clockwise along a curve that is arbitrar-
ily close to the circumferential arc r = r0, α ∈ (−π/2, α0].
We will call such a motion quasistatic circumferential mo-
tions (motions along a circumference). The circumferential
motions require infinitely frequent switchings between the
attractive and repulsive trajectories.

Fig. 2. Quasistatic trajectories of body m.

For α ∈ (π/2, 3π/2), the repulsive and attractive tra-
jectories are symmetric with respect to the axis My
to the respective trajectories for α ∈ (−π/2, π/2). For
α ∈ [α0, 3π/2), body m can move quasistatically along a
circumference counterclockwise.

4. FAST MOTIONS. ALGORITHMS FOR DRIVING
THE SYSTEM INTO THE TERMINAL STATE

By fast motions we understand the motions that transfer
the system between two states of rest in an infinitesimal
time. For such motions, the interaction force of the bodies
is much larger than the force of friction and, therefore, the
center of mass of the system and the line that connects the
bodies remain fixed. By assumption, the bodies may pass
through each other and, hence, by means of a fast motion
body M can be driven to any position on the initial line
Mm; then the position of body m is defined uniquely.

By combining fast and quasistatic motions one can drive
body m into any position on the plane, with body M
remaining arbitrarily close to its initial position. We will
prove this proposition for the particular case where α ∈
(π/2, 3π/2) for the initial position and α ∈ (−π/2, π/2) for
the terminal position. The respective process is illustrated
in Fig. 3. The starting position of body m is denoted by A
and the destination position by B. The larger and smaller
circles depict the successive positions of bodies M and m,
respectively. The shading density of the circles decreases as
the later positions are depicted. First, we proximate body
m quasistatically to body M by a distance of r = ε. If ε is

small enough, the angle α is close to 3π/2. The respective
position of body m corresponds to point C. After this,
we perform a fast motion as a result of which bodies m
and M change their positions to the positions that are
symmetric to the previous positions with respect to the
system’s center of mass, body m comes into point D, while
the change in the position of body M is less than ε. Then,
body m is moved quasistatically along a circumference
clockwise until it arrives at the point E that belongs to the
repulsive trajectory that passes through the desired point
B. Finally, body m is moved quasistatically along this
repulsive trajectory into the point B. Simplifying, we can
regard the described strategy (for ε → 0) as proximation of
bodies m and M until coincidence, with following motion
of body m along an appropriate quasistatic repulsive
trajectory emerging from the origin.
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Fig. 3. Motion of body m between two prescribed points,
with body M remaining close to its initial position.

The entire strategy for moving the system into the given
terminal state can be briefly described as follows. By
alternating fast motions of the system and quasistatic
motions of body m along a circumference, we move the
system into a position in which the line mM passes
through the terminal position of body M . Then, by fast
motion, we transfer body M into the terminal position.
Finally, by using the strategy that was described above,
we move body m into the terminal position, the change in
the position of body M being able to be made arbitrarily
small.

5. CONCLUSION

If at the initial state of rest the bodies of the crawler do
not lie on a common line of maximum slope, the system
can be driven into an arbitrarily small neighborhood of
any terminal state of rest on an inclined rough plane by
combining quasistatic and fast motions.
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