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1. INTRODUCTION

Hyperbolic conservation laws play an important role in
many applications. For instance, modeling the behavior of
fluids or gases leads to conservation equations for quanti-
ties like mass, momentum, or energy. The resulting equa-
tions are typically nonlinear and exhibit phenomena like
shock formation and transport. Parametrized hyperbolic
equations suffer from a highly nonlinear solution manifold
that cannot be approximated appropriately by a linear
subspace, that is, the solution manifold has a slowly de-
caying Kolmogorov N -width, see for instance Ohlberger
and Rave (2016). Therefore, methods that rely solely on
linear combinations of ansatz-functions are not sufficient
to achieve suitable reduced models. Furthermore, the for-
mation and interaction of shocks is an additional difficulty
when dealing with model order reduction for conservation
laws.
In this contribution, we describe a new nonlinear model or-
der reduction technique. The nonlinearity of the approach
stems from the exponential map applied to vector fields in
Euclidean space. We will thus identify diffeomorphisms,
resulting from the application of the exponential map,
with vector fields. Afterwards, we use standard ideas from
linear model order reduction to compute a subspace of the
space of vector fields. During the online phase, for a given
parameter, elements from this subspace are computed and
the exponential map is used to determine the correspond-
ing diffeomorphism. This transformation is subsequently
applied to a (fixed) space-time solution snapshot to obtain
the approximate solution for the new parameter.

2. BASICS FROM DIFFERENTIAL GEOMETRY
AND IMAGE REGISTRATION

In this section, we give a brief overview of important
notions from differential geometry and introduce the basic
concepts of image registration via geodesic shooting.
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2.1 Differential geometry and Lie groups

In the intersection of differential geometry and group
theory, one considers so called Lie groups, which are
groups such that group multiplication and inversion are
smooth. Directly connected to the concept of Lie groups
is the notion of Lie algebras. For a Lie group G, the
corresponding Lie algebra g is defined as the tangent space
to the manifold G at the identity element. The exponential
map exp: g → G describes, for an element v ∈ g of the Lie
algebra, the end point of a shortest path (a geodesic) that
starts at the identity in G in the direction given by v.

2.2 Image registration and geodesic shooting

The field of image registration has its origins in the anal-
ysis of medical image data. Given two images u0, u1 : Ω →
Rd, treated as functions on a fixed domain Ω ⊆ Rd, the aim
of image registration is to find a transformation φ : Ω → Ω
such that u0 ◦ φ−1 ≈ u1. There exist several choices for
the class of transformation to employ. A quite general
approach uses the group of diffeomorphisms of the domain
Ω. Since the group of diffeomorphisms also forms a Lie
group, with the vector space of smooth vector fields on
Ω being the corresponding Lie algebra, we parametrize
a diffeomorphism by a single vector field to which we
apply the exponential map to regain the corresponding
diffeomorphism. This idea is used in the geodesic shoot-
ing algorithm developed in Miller et al. (2006). In the
aforementioned work, the Euler-Poincaré equations for the
evolution along a geodesic in the diffeomorphism group
are described. Together with the corresponding adjoint
equations, it is possible to formulate a gradient descent
algorithm for an energy functional of the form

Eu0→u1
(v0) := ‖v0‖2V +

1

σ2
‖u0 ◦ φ−1

1 − u1‖2L2(Ω),

where v0 : Ω → Rd denotes a vector field, ‖·‖V is a suitable
norm on the space of vector fields, σ > 0 is a weighting
parameter, and the diffeomorphism φ1 : Ω → Ω is given as
the solution at the final time t = 1 of the equation

dφt

dt
= vt ◦ φt,

where vt, for t ∈ [0, 1], solves the Euler-Poincaré equation
for the initial vector field v0. It then holds φ1 = exp(v0).
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3. NONLINEAR APPROXIMATION SCHEME

Before describing the algorithm in detail, we introduce
some more notation: We denote by P ⊂ Rp for some p ∈ N
the parameter space. Moreover, the space-time solution of
the equation under consideration for the parameter µ ∈ P
is denoted by u(µ) : Ω → R. The domain Ω is a subset of
Rn×R+, where n ∈ N is the space dimension. It therefore
holds d = n+1 for the dimension of the domain we deform.
For simplicity, we restrict our attention to a single ”topol-
ogy” of the solution, which is assumed to be independent
of the parameter µ ∈ P. We consider, for instance, only
solutions with a single shock or solutions with two merging
shocks. This means that we assume that it is possible to
transform solutions into each other by means of diffeomor-
phic transformations of the underlying domain Ω.
The idea of using Lie groups together with their corre-
sponding Lie algebra for model order reduction of hy-
perbolic equations was introduced in Ohlberger and Rave
(2013), where finite-dimensional groups acting only on the
spatial domain were considered, for instance the transla-
tion group. Here, we use the infinite-dimensional diffeo-
morphism group on the space-time domain Ω, such that
shock formation and interaction are already included in
the ansatz-functions.

3.1 Offline algorithm

During the offline phase, we first of all choose a reference
parameter µref ∈ P and compute the related full-order
space-time reference solution u(µref). Afterwards, we select
training parameters µ1, . . . , µM ∈ P and compute the
solution snapshots u(µ1), . . . , u(µM ). We do not detail the
exact solution algorithm for the full-order computations,
the only requirement we impose is that the solution data
can be treated as a function on Ω, such that we can apply
the geodesic shooting algorithm for image registration.
Subsequently, vector fields v(µ1), . . . , v(µM ) : Ω → Rd are
computed, using the geodesic shooting algorithm, such
that they minimize Eu(µref)→u(µ1), . . . , Eu(µref)→u(µM ). The
set of vector fields v(µ1), . . . , v(µM ) is now reduced using
proper orthogonal decomposition, similar to the procedure
described in Wang et al. (2019). This step results in
an orthogonal matrix VN , whose columns span an N -
dimensional subspace of the space of vector fields. Finally,
an artificial neural network Φ: P → RN is trained to
approximate the mapping π : P → RN defined as π(µ) =
V >
N v(µ). The function π maps a parameter µ ∈ P to

the coefficients (with respect to the basis VN ) of the
orthogonal projection of the optimal vector field v(µ) onto
the subspace ran(VN ).

3.2 Online algorithm

Given a new parameter µ ∈ P, a forward pass through the
neural network is performed to obtain the approximate
coefficients Φ(µ) ≈ π(µ). Next, the vector field vN (µ) =
VNΦ(µ) is computed. By applying the exponential map
exp to vN (µ), we derive the diffeomorphism φN (µ) =
exp(vN (µ)). The approximate solution for the parameter
µ is now given as uN (µ) = u(µref) ◦ φ−1

N (µ).

4. EXAMPLE

We present the decay of the singular values of the com-
puted vector fields for a Burgers’ equation with two merg-
ing shocks. The equation of interest reads

∂tu+ u ∂xu = 0, u(x, 0) =


2, if x ≤ 0.25,

1, if 0.25 < x < 0.5,

0, otherwise,
where µ ∈ [0.25, 1] =: P, and (x, t) ∈ [0, 1]2 =: Ω. An
example of a space-time solution for this equation for
µ = 1/2 is given in the left part of Fig. 1. Starting with the
reference parameter µref = 0.25, we performed registration
onto 50 snapshots for parameters uniformly selected from
P. The singular values of the vector fields together with
the singular values of the space-time snapshots themselves
are presented in the right part of Fig. 1. The maximum
relative L2-error of the transformed snapshots with respect
to the exact solutions is roughly 6%. The plots show that
the singular values of the vector fields decay much faster
(even exponentially) than those of the snapshots, which
means that the vector fields can be approximated more
efficiently by a linear subspace than the snapshots.
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Fig. 1. Sample solution to Burgers’ equation and singular
values of vector fields (red) and snapshots (blue)

5. CONCLUSION

In this work we describe a new approach for nonlinear
model order reduction for parametrized hyperbolic equa-
tions. Future research in this direction will be concerned
with the computation of the reduced coefficients for the
vector fields by solving a residual-minimization problem.
Furthermore, the treatment of different solution topologies
would make the algorithm more flexible.
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