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1. INTRODUCTION

Once an infectious disease starts circulating in a pop-
ulation, the main goal is to contain its spread. Several
control strategies may be applied to control a disease,
such as detection and isolation of infectious individuals
or vaccination. However, the detection of infectious indi-
viduals is far from being an easy task: various diseases,
such as influenza, cholera, shigella or Covid-19, are of-
ten spread by asymptomatic individuals. The presence of
asymptomatic cases allows a wide circulation of a disease
in the population, since they often remain unidentified.
Hence, the contribution of the so called “silent spreaders”
to the infection transmission dynamics should be consid-
ered in mathematical epidemic models, as in Robinson and
Stilianakis (2013). Unlike the more famous and studied
epidemic models, much less attention has been paid to
the SAIR(S)-type models. Thus, we think that a deeper
understanding of these kinds of models is needed, and
could prove to be very useful in the epidemiological field.

In this work, we consider an SAIRS (Susceptible - Asymp-
tomatic infected - symptomatic Infected - Recovered - Sus-
ceptible) model based on the one proposed in (Robinson
and Stilianakis, 2013, Sec. 2), in which the authors provide
only a local stability analysis. An SAIR-type model is
studied in Ansumali et al. (2020), with application to
SARS-CoV-2. The proposed global stability analysis re-
gards only a simplified version of the model in Robinson
and Stilianakis (2013): first, recovered people do not lose
their immunity; moreover, the infection rates of the asymp-
tomatic and symptomatic individuals are equal, as well
as their recovery rates, while in Robinson and Stilianakis
(2013) these parameters are considered to be potentially
different. In Ottaviano et al. (2022b), we provide a global
stability analysis of the model proposed in Robinson and
Stilianakis (2013), and for some variations thereof. In addi-
tion, we include in our model the possibility of vaccination.
In the investigation of global stability, we answer an open
problem left in Ansumali et al. (2020). In particular, we
study the global asymptotic stability (GAS) of the disease-
free equilibrium (DFE) and provide results related to the
global asymptotic stability of the endemic equilibrium
(EE) for many variations of the model. We found the
expression of the basic reproduction number R0 and prove
that the DFE is globally asymptotically stable if R0 < 1
and unstable if R0 > 1, condition under which a positive
endemic equilibrium (EE) exists.

2. FORMULATION OF THE MODEL

In our model, the total population N is partitioned into
four compartments, namely S, A, I, R, which represent
the fraction of Susceptible, Asymptomatic infected, symp-
tomatic Infected and Recovered individuals, respectively,
such that N = S +A+ I +R. Without loss of generality,
we assume N = 1. The infection can be transmitted to a
susceptible through contact with either an asymptomatic
infected individual, at rate βA, or a symptomatic individ-
ual, at rate βI . From the asymptomatic compartment, an
individual can either progress to the class of symptomatic
infectious I, at rate α, or recover without ever develop-
ing symptoms, at rate δA. An infected individual with
symptoms can recover at a rate δI . We assume that the
recovered individuals do not obtain a long-life immunity
and can return to the susceptible state after an average
time 1/γ. Furthermore, we assume that a proportion ν
of susceptible individuals receive a dose of vaccine, which
grants them a temporary immunity. Moreover, we con-
sider the vital dynamics of the entire population and, for
simplicity, we assume that the rate of births and deaths
are the same, equal to µ; we do not distinguish between
natural deaths and disease related deaths. The system of
ODEs that describes the model is given by:

dS(t)

dt
= µ−

(
βAA(t) + βII(t)

)
S(t)− (µ+ ν)S(t)+

+ γR(t),

dA(t)

dt
=

(
βAA(t) + βII(t)

)
S(t)− (α+ δA + µ)A(t),

dI(t)

dt
= αA(t)− (δI + µ)I(t),

dR(t)

dt
= δAA(t) + δII(t) + νS(t)− (γ + µ)R(t),

(1)

with initial condition (S(0), A(0), I(0), R(0)) belonging to
the set

Γ̄ = {(S,A, I,R) ∈ R4
+|S +A+ I +R = 1}, (2)

where R4
+ is the non-negative orthant of R4. Assuming

initial conditions in Γ̄, S(t) + A(t) + I(t) + R(t) = 1, for
all t ≥ 0; hence, system (1) is equivalent to the following
three-dimensional dynamical system:
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dS(t)

dt
= µ−

(
βAA(t) + βII(t)

)
S(t)− (µ+ ν + γ)S(t)+

+ γ(1−A(t)− I(t)),

dA(t)

dt
=

(
βAA(t) + βII(t)

)
S(t)− (α+ δA + µ)A(t),

dI(t)

dt
= αA(t)− (δI + µ)I(t),

(3)

with initial condition (S(0), A(0), I(0)) belonging to the
set

Γ = {(S,A, I) ∈ R3
+|S +A+ I ≤ 1},

which is positively invariant for system (3). In the follow-

ing, we denote with Γ̊ the interior of the set Γ.

3. RESULTS

System (3) always admits a disease-free equilibrium, given
by

x0 = (S0, A0, I0) =

(
µ+ γ

µ+ ν + γ
, 0, 0

)
. (4)

The behaviour of the system is related to the basic
reproduction number R0 of (3), given by

R0 =

(
βA +

αβI
δI + µ

)
γ + µ

(α+ δA + µ)(ν + γ + µ)
. (5)

Theorem 3.1. The disease-free equilibrium x0 of (3) is
globally asymptotically stable in Γ if R0 < 1, and unstable
if R0 > 1.
Theorem 3.2. There exists a unique endemic equilibrium
x∗ = (S∗, A∗, I∗) in Γ̊ for system (3) if and only if R0 > 1.

In Ottaviano et al. (2022b), we analyze different variations
of the model. In the case of the SAIR model (i.e. γ = 0) and
when asymptomatic and symptomatic individuals have the
same transmission rate and recovery rate (i.e. βA = βI
and δA = δI), we prove the following result providing an
appropriate Lyapunov function.
Theorem 3.3. The endemic equilibrium x∗ = (S∗, A∗, I∗)

is globally asymptotically stable in Γ̊ for system (3) if
R0 > 1.

In the general case of the SAIRS model with different
rate of transmission and recovery for the two groups of
infectious individuals, we use a geometric approach for
the global stability of equilibria of nonlinear autonomous
differential equations proposed in Lu and Lu (2017).
Theorem 3.4. Assume that R0 > 1 and βA < δI . Then,
the endemic equilibrium x∗ is globally asymptotically stable
in Γ̊ for system (1).

However, as illustrated by various numerical simulations
in Ottaviano et al. (2022b), we are led to think that the
assumption on the parameters βA and δI could be relaxed.

4. EXTENSION TO A MULTI-GROUP MODEL

Later, we generalize the SAIRS model to a multi-group
model, which takes into account different groups of indi-
vidual among which an epidemic can spread.

In this framework, the total population is divided into
n groups. We denote with Si, Ai, Ii and Ri the frac-
tion of Susceptible, Asymptomatic infected, symptomatic

Infected and Recovered individuals in the i−th group,
respectively, such that Si +Ai + Ii +Ri = 1 at all times.

The disease can be transmitted by individuals Ai and Ii,
within their group, to the susceptible Si, with transmission
rate βA

ii and βI
ii, respectively, but also between different

groups: e.g., individuals Aj and Ij , belonging to the j-th
group, may infect susceptible individuals Si of group i with
transmission rate βA

ij and βI
ij , respectively. We also assume

that the multi-group network is undirected and connected.
The disease-related parameters, that are the average time
of the symptoms developing, denoted by 1/α, the recovery
rates from both the infectious compartments, δA and δI ,
and the average time to return to the susceptible state,
1/γ, do not depend on the group of origin. We assume,
instead, that the proportion νi of vaccinated individuals
depends on the group. Moreover, we consider the vital
dynamics of each group, assuming that the rate of births
and deaths are the same in the i−th group, equal to µi.

Even though some results on SIRS-type model in Muroya
et al. (2013) and SEIRS-type model in Fan et al. (2018)
have been achieved, the problem of existence and global
stability of an endemic equilibrium for several multi-group
models remains open, as stated in Mohapatra et al. (2015).

Our results, in Ottaviano et al. (2022a), regard a gen-
eralization of Theorems 3.1-3.3 for the multi-group type
model. The problem of the global asymptotically stability
of the endemic equilibrium, as in Theorem 3.4, remains
open.
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