
pyMOR – Reduced Order Modeling with
Python ?

Linus Balicki ∗ René Fritze ∗∗ Petar Mlinarić ∗ Stephan Rave ∗∗

Jens Saak ∗∗∗ Felix Schindler ∗∗

∗ Department of Mathematics, Virginia Tech, Blacksburg, USA
(e-mail: {balicki,mlinaric}@vt.edu).

∗∗ Applied Mathematics, University of Münster, Germany
(e-mail: {rene.fritze,stephan.rave,felix.schindler}@uni-muenster.de)

∗∗∗ Max Planck Institute for Dynamics of Complex Technical Systems,
Magdeburg, Germany (e-mail: saak@mpi-magdeburg.mpg.de)

Abstract: pyMOR is a free and open source software library for writing model order reduction
applications with the Python programming language. Implemented algorithms include both
Reduced Basis and system-theoretic reduction methods, as well as non-intrusive approaches such
as approximation with artificial neural networks. All these algorithms can be easily integrated
with external high-performance PDE solver packages. In this poster contribution we give a brief
overview on the design of pyMOR. Further, we will present in more details two main features of
the upcoming 2022.1 release: 1. a new and unified model hierarchy, 2. new discretization routines
to create these models from common analytical problem definitions using different PDE solver
backends.

Keywords: model reduction, software, reduced basis method, balanced truncation, IRKA,
POD, empirical interpolation, artificial neural networks

1. INTRODUCTION

Over the last decade, Model Order Reduction (MOR) has
become an essential tool in mathematical modeling and
simulation workflows, significantly speeding up compu-
tation times, especially in multi-query contexts such as
optimization, optimal control or interactive design appli-
cations (see, e.g., Benner et al. (2020)).

Since MOR methods work on top of existing ODE/PDE
solvers, their implementation is often non-trivial and
requires knowledge of both the given solver and the
MOR method to be implemented. pyMOR (Milk et al.
(2016); Balicki et al. (2019); Mlinarić et al. (2021),
https://www.pymor.org) is a free and open source MOR
library for the Python programming language which fa-
cilitates the integration of MOR methods with high-
performance solvers by expressing MOR algorithms via
operations on simple solver interface classes.

In this poster contribution we give a short overview on
pyMOR’s design (Section 2). In Section 3 we discuss
two new features of the upcoming 2022.1 release, which
significantly facilitate the construction and reduction of
full-order models (FOMs) in pyMOR.

? Funded by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) under Germany’s Excellence Strat-
egy EXC 2044 –390685587, Mathematics Münster: Dynam-
ics–Geometry–Structure and under RA 3055/1-1, SA 3477/1-1: py-
MOR – Nachhaltige Software zur Modell-Ordnungs-Reduktion.

2. SOFTWARE DESIGN

pyMOR’s design is based on the idea of expressing all
MOR operations through low-level, MOR agnostic inter-
face classes for interacting with the solver that implements
the FOM. In particular this allows to easily prototype new
MOR algorithms using a lightweight discretization library,
such as the toolkit shipped with pyMOR, and later use
the same implementation for a large application problem
implemented in a specialized high-performance code.

2.1 Interfaces

pyMOR interacts with external solvers through Vector-
Arrays, Operators and Models. A VectorArray repre-
sents an ordered collection of vectors of the same di-
mension and allows the usual linear algebra operations
such as inner products or linear combinations. Operators
encapsulate matrices or nonlinear operators, which can be
applied to VectorArrays. A Model encodes the math-
ematical structure of the given FOM and exposes the
solvers’ simulation routines via the solve method.

We emphasize that all required interface operations can
be expected to be already implemented in the external
solver. In particular, no MOR-specific code has to be added
to integrate a new solver with pyMOR. The integration
usually is technically realized by compiling the external
solver as a Python extension module, but also network or
disk-based communication is possible.

MATHMOD 2022 Discussion Contribution Volume, 10th Vienna Conference on Mathematical Modelling, Vienna, Austria, July 27-29, 2022

ARGESIM Report 17 (ISBN 978-3-901608-95-7), p 63-64, DOI: 10.11128/arep.17.a17149 63



FirstOrderModel

LTIModel

SecondOrderLTIModel BilinearModel

Model

StationaryModel

LinearDelayModel

LinearStochasticModel

TimeDependentModel

AffineModel

Fig. 1. Hierarchy of Models in pyMOR 2022.1 (subject to
change). Reductors for a base class can be applied to
each subclass in the hierarchy.

2.2 Algorithms

Based on the aforementioned interface classes, pyMOR im-
plements various MOR algorithms such as Reduced Basis
(RB) methods, Proper Orthogonal Decomposition (POD),
(discrete) empirical interpolation, Balanced Truncation,
the Iterative Rational Krylov Algorithm (IRKA), as well
as non-intrusive data-driven methods, such as approxima-
tion with artificial neural networks. As an example, the
Petrov-Galerkin projection WT · A · V of the full-order
matrix A onto bases spanned by the columns of V and W
can be written as

W.inner(A.apply(V)),

where A is given as an Operator and V,W are Vector-
Arrays. All MOR algorithms are realized as Reductor
objects, which transform a given full-order Model to a cor-
responding reduced-order Model (ROM) of similar type,
where the FOM’s Operators have been replaced by new
Operators storing their reduced counterparts. Due to
the general nature of pyMOR’s interfaces, pyMOR also
implements further algorithms, such as Gram-Schmidt or-
thonormalization, a Newton algorithm or different time
steppers.

3. NEW FEATURES IN PYMOR 2022.1

In this section we highlight two main new features in py-
MOR related to building and reducing Models in pyMOR.

3.1 A new Model hierarchy

To our knowledge, pyMOR is the only available software
package which includes a large variety of both RB meth-
ods, which are geared at parameterized PDEs, as well as
system-theoretic methods such as Balanced Truncation or
IRKA, which originally were mainly developed for LTI
systems. For years, both branches of MOR have been
developed mostly independently from one another, which,
so far, has also been reflected in pyMOR, where system-
theoretic reductors operate on LTIModels and related
classes, which are incompatible with the classes required
by RB reductors, which operate on StationaryModels
and InstationaryModels.

Discretizer
Analytical
Problem

Model
(FOM)

Reductor
Model
(ROM)

Fig. 2. Reduced-order modeling pipeline in pyMOR (blue
background: solver specific code, green background:
generic code).

In pyMOR 2022.1, the existing Model classes are refac-
tored into a new class hierarchy that provides a unified
view onto Models for both RB and system-theoretic meth-
ods (see Fig. 1). In particular, this allows to seamlessly
apply RB reductors for general FirstOrderModels to
Models with additional structure, such as LTIModel, in
addition to the more specialized methods, e.g., Balanced
Truncation.

3.2 Discretizers for external PDE solvers

pyMOR’s builtin discretization toolkit uses analytical-
problems as data structures to define the (parameterized)
PDE problem to be solved. Analyticalproblems combine
a definition of the computational domain with coefficient
functions for the respective PDE that is given by the
respective problem class. Such an analyticalproblem is
then given as an input to a discretizer, which builds
a corresponding Model using pyMOR’s builtin FEM/FV
Operators. So far, building a Model with an external PDE
solver, even for a standard benchmark problem, required
manually building the Model using appropriate PDE solver
code and pyMOR’s wrapper classes for the given solver.

Based on pyMOR’s recently introduced symbolic expres-
sion library, pyMOR 2022.1 includes new discretizers
which allow to use the same analyticalproblems to au-
tomatically build Models using external solvers, such as
FEniCS, and, thus, to make use of advanced features of
these solvers, such as higher-order methods or MPI paral-
lelization. This enables a powerful reduced order modeling
workflow, where the user can easily build efficient ROMs,
even for complex problems, without having knowledge of
the used PDE solver library (see Fig. 2).

REFERENCES

Balicki, L., Mlinarić, P., Rave, S., and Saak, J. (2019).
System-theoretic model order reduction with pyMOR.
PAMM, 19(1). doi:10.1002/pamm.201900459.

Benner, P., Schilders, W., Grivet-Talocia, S., Quarteroni,
A., Rozza, G., and Miguel Silveira, L. (eds.) (2020).
Model Order Reduction: Volume 1–3. De Gruyter.

Milk, R., Rave, S., and Schindler, F. (2016). pyMOR
– Generic Algorithms and Interfaces for Model Order
Reduction. SIAM Journal of Scientific Computing,
38(5), S194–S216. doi:10.1137/15M1026614.

Mlinarić, P., Rave, S., and Saak, J. (2021). Parametric
Model Order Reduction Using pyMOR. In P. Benner,
T. Breiten, H. Faßbender, M. Hinze, T. Stykel, and
R. Zimmermann (eds.), Model Reduction of Complex
Dynamical Systems, International Series of Numerical
Mathematics, 357–367. Springer International Publish-
ing, Cham. doi:10.1007/978-3-030-72983-7 17.

MATHMOD 2022 Discussion Contribution Volume, 10th Vienna Conference on Mathematical Modelling, Vienna, Austria, July 27-29, 2022

64




