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1. INTRODUCTION

The capsule system driven by a periodically moving in-
ternal mass was considered in a number of papers, see
Chernousko (2008); Yan et al. (2017). Different control and
optimization problems were solved for such systems. The
solution of such problems is always searched among the
motions with periodic velocity of the capsule, because such
motions provide prolonged positive averaged displacement
of the system. But the uniqueness and stability of such
periodic regimes of motion is not sufficiently studied. For
the case when the medium resistance is a monotonous
continuous function of the velocity of the capsule and
the velocity of the internal mass relative to the capsule
is continuous, it was proved, that the periodic regime
of motion exists, is unique, and the velocity of all other
motions converge to the periodic one exponentially, see
Knyaz’kov and Figurina (2020). The same results were
obtained in Figurina and Knyazkov (2022) for a system
of several interacting bodies and capsules.

In the current paper, a capsule system with an internal
mass moves on a plane with dry friction, and the relative
velocity of the mass has discontinuities (jumps). These
jumps may occur due to collisions in the system. It is
proved, that the periodic regime of motion exists and the
velocity of any motion converges to the periodic velocity
exponentially or in finite time. In contrary to the results
obtained in Knyaz’kov and Figurina (2020); Figurina and
Knyazkov (2022) for similar locomotion systems, in the
current paper, the periodic by velocity motion may be
non-unique. This non-uniqueness appears due to jumps in
velocity of the capsule for the case of dry friction between
the capsule and the plane.

2. PROBLEM STATEMENT

The capsule of mass M contains an internal body of mass
m. The position l(t) of the internal mass relative to the
capsule changes periodically as a result of some forces,
that are internal for the system:

l(t+ T ) = l(t).

The capsule moves with the velocity v(t) along a straight
line on a rough plane (see Fig. 1). Dry friction force R acts
on the capsule. The equation of motion can be written as

v̇ = u+ r(v, u), (1)
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Fig. 1. Scheme of the motion

where r is the normalized dry friction force, r = R
M+m , u is

the normalized relative acceleration of the internal mass,
u = − m

M+m l̈. According to Coulomb’s law of dry friction,

r(v, u) =

{−µ signv, v ̸= 0,
−u, v = 0, |u| ≤ µ,
−µ signu, v = 0, |u| > µ,

(2)

where µ = kg, k is the coefficient of dry friction, g is the
gravitational acceleration. We assume, that for t ∈ [0, T ]

u(t) = u0(t) +

N∑
i=1

diδ(t− ti),

where δ is Dirac delta function, u0(t) is a periodic
piecewise-continuous function. As far as the relative mo-
tion of the internal mass is periodic, we have

u(t+ T ) = u(t), t ≥ 0, (3)

T∫
0

u(t)dt = 0. (4)

The details of the statement of the problem can be found
in Knyaz’kov and Figurina (2020). We are interested in the
existence, uniqueness, and stability of the periodic solution
v∗(t) of the problem (1)-(4), such that

v∗(t+ T ) = v∗(t).

3. MAIN RESULTS

The following results regarding the periodic solution v∗(t)
and the behavior of velocities v(t) of motions with any
initial velocity are obtained.

Lemma 1. The distance between any two solutions v(t),
ṽ(t) of the equation (1) does not increase:

d

dt
|v(t)− ṽ(t)| ≤ 0.
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It follows from (1) and (2). From Lemma 1, the following
corollary can be easily obtained.

Corollary 1. If there exist two periodic solutions v∗, ṽ∗ of
the equation (1), they differ by a constant:

v∗(t) = ṽ∗(t) + C.

Theorem 1. The periodic solution v∗(t) of the problem (1)-
(4) exists. If the periodic solution is non-unique, then the
set of periodic solutions consists of all the solutions with
initial values from an interval [vmin

∗ (0), vmax
∗ (0)].

Proof. The idea of the proof is the following. For the

initial values v+(0) = max |u0(t)|T +
∑N

i=1 |di|, v−(0) =
−v+(0), we have v+(0) ≥ v+(T ), v−(0) ≤ v−(T ). Due
to continuity, there exists such v∗(0) ∈ [v−(0), v+(0)] that
the corresponding solution v∗(t) is periodic.

Let vmin
∗ , vmax

∗ are periodic solutions with minimum (max-
imum) possible initial values, v(0) ∈ (vmin

∗ (0), vmax
∗ (0)).

Due to Lemma 1, the distances |vmin
∗ − v|, |vmax

∗ − v|
between the solutions do not increase. From Corollary 1,

vmax
∗ = vmin

∗ + C. Thus, v = vmin
∗ + C̃, and v is periodic.

The behavior of non-periodic solutions is described by the
following theorem.

Theorem 2. Any solution v(t) of the problem (1)-(4) such
that v(0) > vmax

∗ (0) converges to the periodic solution
vmax
∗ (t). Any solution v(t) of the problem such that v(0) <
vmin
∗ (0) converges to the periodic solution vmin

∗ (t).

Proof. Due to Lemma 1, any solution v with v(0) >
vmax
∗ (0) tends to vmax

∗ +C. It can be shown that vmax
∗ +C

is also the solution of (1)-(4). By definition, vmax
∗ is the

periodic solution with the maximum possible initial value
vmax
∗ (0), hence, C = 0 and v converges to vmax

∗ . The
second part of the theorem is proved in a similar way.

The following theorem gives a criteria for the type of this
convergence.

Theorem 3. (A) Solution v(t) such that v(0) > vmax
∗ (0)

converges to the periodic solution vmax
∗ (t) in a finite time

if and only if there exists a time instant τ such that
vmax
∗ (τ) = 0, and either vmax

∗ (t) < 0, |u(t)| ≤ µ or
vmax
∗ (t) ≡ 0, −µ ≤ u(t) < µ take place in some left vicinity
of the point τ .

(B) Solution v(t) such that v(0) < vmin
∗ (0) converges to

the periodic solution vmin
∗ (t) in a finite time if and only

if there exists a time instant τ such that vmin
∗ (τ) = 0,

and either vmin
∗ (0) > 0, |u(t)| ≤ µ or vmin

∗ (t) ≡ 0,
−µ < u(t) ≤ µ take place in some left vicinity of the
point τ .

(C) If a non-periodic solution v(t) does not converges to
the periodic solution vmax

∗ (t) (or vmin
∗ (t)) in a finite time,

it converges to vmax
∗ (t) (or vmin

∗ (t)) exponentially.

Proof. Let v be a non-periodic solution such that v(0) >
vmax
∗ (0). If vmax

∗ (t) ≡ 0, −µ ≤ u(t) < µ for t ∈ [τ − a, τ ],
then a distance between v(t) and vmax

∗ (t) decreases by a
constant value over every time period. If vmax

∗ (t) < 0,
|u(t)| ≤ µ for t ∈ [τ − a, τ), then there exists such time
moment t0 ∈ [τ − a+nT, τ +nT ] that v(t0) = 0, v(t) = 0,
t ∈ (t0, τ + nT ], and v(t) = vmax

∗ (t) for all t ≥ τ + nT .
Thus, part (A) is proved. (B) is proved in a similar way.

Fig. 2. Example of non-uniqueness of the periodic regime

If a non-periodic v does not converge to v∗ in a finite time,
there is infinite number of intervals where v and v∗ have
different signs. From (1), (2), the distance between v and
v∗ decreases with the rate 2µ on these intervals. It can be
proved that the total length of these intervals is sufficiently
large, thus, the exponential convergence takes place.

Consider the example, that illustrates the behavior of the
velocities v(t) for different initial velocities v(0).

Example. Let’s take take µ = 1, T = 4, u(t) = u0(t) −
3δ(t − T/2) + 3δ(t − T ), where u0(t) = 2 for t ∈ [0, T/2)
and u0(t) = −2 for t ∈ [T/2, T ). The corresponding
velocities for different initial values are shown in Fig. 2.
The velocities of periodic and non-periodic regimes are
shown by red and black colors correspondingly. Here we
have vmin

∗ (0) = 0, vmax
∗ (0) = 1.

If the initial velocity of the capsule v(0) is greater than
vmax
∗ (0), then v(t) converges to the motion with vmax

∗ (t),
and average velocity of the capsule is directed to the
right. If the initial velocity of the capsule v(0) is less
than vmin

∗ (0), then v(t) converges to the motion with
vmin
∗ (t), and average velocity of the capsule is directed
to the left. And there exists some initial velocity v(0) ∈
[vmin

∗ (0), vmax
∗ (0)], that the capsule returns to its initial

state at the end of each time period. This can be used
to control vibro-driven capsule robots, because it gives us
the ability to influence the direction of movement of the
capsule only by specifying its initial velocity. Note, that
all periodic solutions v∗(t) with initial velocities v∗(0) ∈
[vmin

∗ (0), vmax
∗ (0)] are not asymptotically stable.
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