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Abstract: Model reduction of stable linear-time invariant systems by balanced truncation is
well-established in systems and control engineering. For unstable systems, several alternatives
have been suggested, with linear-quadratic Gaussian balanced truncation arguably the most
prominent one. Here, we discuss an alternative method that can be computed in a potentially
more efficient way.
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1. INTRODUCTION

Balancing-related model order reduction (MOR) is one of
the main techniques for reducing the complexity of linear
dynamical systems

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t), (1)

and is particularly popular in systems and control engi-
neering due to its beneficial properties for control system
design (e.g. Antoulas (2005); Benner (2009); Baur et al.
(2014); Benner et al. (2021)). The basic principle is to use
two symmetric positive semidefinite matrices P,Q and a
contragredient transformation to find a coordinate system
in which they are equal and diagonal. Then one projects
the dynamics of (1) onto the dominant subspace of P = Q
in this coordinate system. This is always possible if the
system is controllable and observable, and can still be used
on the controllable and observable subspaces for MOR
purposes.

The most common choice (Moore (1981)) for P,Q is to
use the system (reachability and obervability) Gramians
which solve the two “dual” Lyapunov equations

AP + PAT + BBT = 0, (2a)

ATQ + QA + CTC = 0. (2b)

Note that for the usual SR or BFSR procedures to compute
a reduced-order model from A,B,C and P,Q, one needs
(approximations of) full-rank or Cholesky factors of P,Q,
i.e. one works with S,R satisfying

P = SST , Q = RTR

approximately. A prerequisite for this to be a successful
is that A is stable, i.e., has all its eigenvalues in the open
left half of the complex plane. The resulting method is
commonly called Balanced Truncation (BT).
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2. BT FOR UNSTABLE SYSTEMS

One possibility to apply balancing-based MOR for unsta-
ble systems is to use LQG balanced truncation (LQGBT)
(Jonckheere and Silverman (1983)). Here, (P,Q) =
(Xs, Ys) is chosen, where Xs and Ys are the unique stabi-
lizing solutions of the algebraic Riccati equations (AREs)
corresponding to the linear-quadratic regulator (LQR) and
Kalman-Bucy filter problems related to (1):

ATX + XA−XBBTX + CTC = 0, (3a)

AY + Y AT − Y CTCY + BBT = 0. (3b)

An alternative to LQGBT is closed-loop balancing (Wortel-
boer (1994)). The idea is to first stabilize the system and
then to use the Gramians of the closed-loop system in
the balance-and-truncate procedure. Suppose one chooses
for the stabilization Xs, the stabilizing solution of the
LQR ARE (3a). This requires to first compute the unique
stabilizing solution Xs of the LQR Riccati equation and
then to apply the feedback law

us(t) = −BTXsx(t) + u(t)

to (1), resulting in the closed-loop system

ẋs(t) = (A−BBTXs)xs(t) + Bu(t), ys(t) = Cxs(t). (4)

Then, closed-loop balanced truncation (CLBT) uses the
solutions Ps, Qs of the Lyapunov equations

(A−BBTXs)Ps + Ps(A−BBTXs)
T + BBT = 0, (5a)

(A−BBTXs)
TQs + Qs(A−BBTXs) + CTC = 0. (5b)

As it turns out, Ps can simply be computed by applying
the sign function to the Hamiltonian matrix[

A −BBT

−CTC −AT

]
(6)

associated to the LTI system (1), without ever computing
Xs. In particular, Ps can be read off from sign(H) with-
out further computation! This follows from the following
corollary of the proof of (Kenney et al., 1989, Theorem 1).

Corollary 1. Let (A,B) be stabilizable, and (A,C) be
detectable. Then the unique stabilizing solution Xs to the
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ARE (3a) exists and is symmetric positive semidefinite.
Hence, A − BBTXs is stable, (5a) as well as (5b) have
unique solutions Ps = PT

s ≥ 0, Qs = QT
s ≥ 0, resp., and

it holds

sign(H) =

[
−I + 2PsXs −2Ps

2XsPsXs − 2Xs I − 2XsPs

]
. (7)

How to get Qs solving (5b) is not so straightforward,
though. It should be computed using any Lyapunov solver
where one would then also need Xs to set up the coefficient
matrix A−BBTXs.

It is interesting to note that the observability Gramian
of yet another stabilized system can also be read off
from sign(H). Here, one uses as “closed-loop matrix” A−
YsC

TC, which is stable under the same assumptions as
used in Corollary 1. The observability Gramian Q̃s of this
stable LTI system solves the Lyapunov equation

(A− YsC
TC)T Q̃ + Q̃(A− YsC

TC) + CTC = 0. (8)

Now, Q̃s can be obtained from the (1, 2)-block of the sign
function applied to the Hamiltonian matrix corresponding
to (3b) which is nothing but HT with H as in (6). As

sign
(
HT

)
= (sign(H))T , we can read-off Q̃s from the

(2, 1)-block of sign(H). BT could now also be based on

(P,Q) = (Ps, Q̃s), which to the best of our knowledge
has not been described in the literature. As we will see
from the numerical example below, this new balancing-
based MOR method for unstable systems yields very good
results, comparable to LQGBT.

2.1 Numerical Example

We use the eady data from the SLICOT benchmark col-
lection 1 . Here, n = 598, m = p = 1. We computed
reduced-order models (ROMs) of order r = 17 using
BT and LQGBT as implemented in MORLAB (Benner
and Werner (2020)). We also computed a ROM based on

(Ps, Q̃s) as suggested above, where we used signm from
MORLAB to compute sign(H) and read off the (1, 2)-

and (2, 1)-blocks to get Ps and Q̃s. We then obtained
approximate full-rank factors of both matrices using trun-
cated SVDs, and passed them to srrom from MORLAB
to compute the reduced-order model, using the rank pa-
rameter set to r = 17. For now, we call this method
”CLBT2”. Fig. 1 shows the Bode magnitude plot for the
full-order model and the three computed ROMs, where the
graphs are indistinguishable in the “eyeball norm”. The
Bode magnitude plot of the errors for the three ROMs is
displayed in Fig. 2. Here, the interesting fact arises that
the error plots of LQGBT and CLBT2 coincide, and differ
from that of BT. This supports the conjecture that CLBT2
and LQGBT actually compute the same ROM, i.e., that
they are equivalent.

3. OUTLOOK

The discussion of the conjecture that the new ”CLBT2”
method is really just another (and potentially) more
efficient implementation of LQBT will be part of the
talk delivered at MATHMOD 2022. The proof of this
1 https://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/
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Fig. 1. Frequency responses for the full- and reduced-order
models using the “eady data”.
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Fig. 2. Frequency responses for the errors of the reduced-
order models using the “eady data”.

conjecture will be reported elsewhere, as it requires more
space than available here.
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