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1. INTRODUCTION

Poroelastic structures can be found in many biological
applications, such as the study of biofilm growth dis-
tribution near fluids, cardiac perfusion and myocarditis
formation (see Showalter (2005); Barnafi et al. (2021);
Freitas Reis et al. (2019a)). This work concerns the for-
mation of oedema, a build up of excess of fluid content in
the myocardial intercellular space, due to an inflammatory
reaction driven by the immune system.

We extend the results from Freitas Reis et al. (2019a,b)
and develop a phenomenological model for the dynamic
interaction between poroelastic finite-strain deformations
and the chemotaxis of leukocytes towards pathogens. We
address the local solvability of such model by studying its
linearization, and additionally include the applicability of
this model for large scale simulations by devising a robust
block preconditioner (White et al. (2016)).

The main advantages of the proposed mathematical model
and the associated computational methods are:

(1) a framework valid for finite strains,
(2) the versatility of the formulation to accommodate 2D

or 3D geometries,
(3) the accuracy and efficiency of the numerical scheme,
(4) the potential of replacing invasive methods for the

detection of interstitial fibrosis and myocarditis (such
as endomyocardial biopsy) by techniques hinging only
on MRI data.

2. THE MODEL

We consider an open connected domain Ω representing the
heart that is deformed by a deformation field x. A refer-
ence point X is deformed into the point x(X, t) = X +
u(X, t), where u is the displacement field and F := ∇x.
The domain represents a mixture of extracellular and
intracellular space, distributed according to their poros-
ity, i.e. the local percentage of such phase pulled-back
to reference configuration (MacMinn et al. (2016)), given
respectively by ϕ, and ϕIC = det(F )−ϕ. In the extracellu-
lar space we consider the concentration of the leukocytes
and a pathogen, given by cl and cp respectively. These
concentrations, together with the porosity, the pressure
p acting on the intracellular space and the displacement
form the main (primary) variables of our model.

The conservation of linear momentum is given by (MacMinn
et al. (2016)):

−div
(
P − αpdet(F )F−T

)
= 0 in Ω,

where P is the Piola stress tensor, and α is the Biot-
Willis modulus. The Piola stess tensor P is related to the
primary variables through a Helmholtz potential Ψ such
that P = ∂Ψ

∂F , in our case given by the Holzapfel-Ogden
energy (Holzapfel and Ogden (2009)).

In the extracellular space we consider the mass conser-
vation of the liquid it contains, given by the following
equation (MacMinn et al. (2016)):

dϕ

dt
+ div (ϕK(F , ϕ)∇ p) = Θ(p, cp) in Ω,
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where K is modeled with an isotropic power law, and the
immune response is modeled through Θ using a Starling-
Hill function (Freitas Reis et al. (2019a)). The evolution of
the immune system dynamics related to the concentrations
cp, cl is dictated by the following mass conservation laws:

d(ϕcp)

dt
− div (ϕDp(F )∇ cp)

= rp(ϕ, cp, cl), in Ω,

d(ϕcl)

dt
− div (ϕDl(F )∇ cl − χϕcl ∇ cp)

= rl(ϕ, cp, cl), in Ω.

both valid throughout Ω, where Dp,Dl are the pulled-
back diffusion tensors for the species in the extracellular
space, χ is the leukocyte chemotactic rate and rp, rl are
the reaction terms that yield the interaction between the
pathogen and the leukocytes. The last equation is given
by the incompressibility of the intracellular space:

det(F )− ϕ = 1− ϕ0, in Ω,

where ϕ0 represents the initial (resting) porosity.

3. RESULTS

In Figure 1 we show the evolution of the chemotaxis
variables cp (first row) and cl (second two), where it can
be appreciated how leukocytes appear as a reaction to the
passage of the pathogen.

Fig. 1. Evolution of pathogens and leukocytes concentra-
tion (first and second row, respectively) at t = 0
minutes and t = 15 minutes.

In our work we report five different numerical tests:
i) a sensitivity analysis, where pathogen concentration,
pressure and displacement were studied for a wide range of
different parameters; ii) an isolated poromechanics study,
where compression and drainage responses of the tissue
were verified; iii) a coupled chemotaxis study, where the
entire model was tested with an initial concentration of
pathogen in a 2D square domain; iv) a convergence study,
to validate the approximability properties of our proposed

numerical scheme; lastly, v) an integrated simulation in a
real left ventricle geometry, together with a verification of
the robustness of our preconditioner in such case.

4. CONCLUSIONS

We have proposed a general model capturing the phe-
nomenological features of the interaction between chemo-
taxis of the immune system in saturated poroelastic me-
dia admitting large deformations. The problem exhibits a
saddle-point structure that allowed us to devise an ade-
quate approximation scheme, that we complemented with
a block-partitioned preconditioner. The vast collection of
numerical tests allow us to conclude that our model yields
a physiologically accurate behavior, which together with
our scalable solver results in a realistic model that can be
efficiently approximated numerically in large scale simula-
tions.

Further investigation is necessary, for instance, regarding
the specific role of the anisotropic porous structure of the
tissue, as well as in designing new coupling mechanisms
that will contribute to a better understanding of the
formation and termination of myocarditis and myocardial
oedema. Another fundamental problem to address is that
of a more thorough sensitivity analysis, in order to better
understand the role of each of the many parameters
involved in the model, so that they can be more easily
adapted to patient-specific scenarios.
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