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1. INTRODUCTION

We consider the computation of low-order port-Hamilto-
nian (pH) surrogate models of the form

ΣpH :

{
ẋ(t) = (J −R)Qx(t) +Bu(t),

y(t) = BTQx(t),

where J, R, Q ∈ Rr×r and B ∈ Rr×m with J = −JT,
R ≥ 0, and Q ≥ 0. We call x : R → Rr, u : R → Rm, and
y : R → Rm the state, input, and output of the system,
respectively. The state dimension r is also called the model
order of the system. We compute surrogate models in the
sense that ΣpH is not derived by first-principle modeling
but is instead obtained by approximating the input-to-
output mapping of a given system.

For linear dynamical systems, the input-to-output map-
ping is characterized by the transfer function in the fre-
quency domain. The transfer function of ΣpH is given by

HpH(s) := BTQ(sIr − (J −R)Q)
−1
B.

In this work, we aim at determining matrices J, R, Q, and
B such that HpH approximates the transfer function Hg

of a given (possibly unstructured) system Σg with respect
to the H∞ norm. Let RHm×m∞ denote the normed space of
all real-rational and proper m×m transfer functions that
have no poles in the set C+ := {λ ∈ C | Re(λ) ≥ 0}. Then
the H∞ norm of a function H ∈ RHm×m∞ is given by

‖H‖H∞
:= sup

λ∈C+

‖H(λ)‖2 = sup
ω∈R

σ1(H(iω)),

where σ1(·) denotes the largest singular value of its matrix
argument.

Two use cases for the construction of low-order surro-
gate models that approximate a given input-to-output
mapping are model order reduction (MOR) and system
identification. MOR is used when a given model has a high
complexity (e. g., a large state-dimension), which makes its
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repeated simulation or model-based control computation-
ally prohibitively expensive. Therefore, MOR is applied to
construct a low-order surrogate model that is then used in
place of the high-complexity model. On the other hand,
system identification is applied when no mathematical
model of a given system is available, and instead a model
must be constructed from experimental data. Our method
can be applied in both situations. However, in this note, we
only explain our method in the context of MOR and refer
to Schwerdtner (2021) for a related system identification
algorithm.

The main features of our method are as follows:

• We construct surrogate models with pH structure,
which are automatically passive. Passivity leads to
several benefits for simulation and controller design.

• We only use transfer function evaluations to construct
our low-order model. In this way, no particular model
structure of the original model is required for our
computation of a pH surrogate model. Therefore, our
method can be applied to a wide range of dynamical
systems.

• Our experiments show that our algorithm can deter-
mine pH surrogate models that are as accurate as
models found by well-established (and unstructured)
MOR routines such as balanced truncation (BT).

2. OUR METHOD

In Schwerdtner and Voigt (2020) we pose MOR as a
parameter optimization problem. For that, we define a
parametrized pH system as follows.

Lemma 1. (Schwerdtner and Voigt (2020)). Let θ ∈ Rnθ
be a vector with nθ := r

(
3r+1

2 +m
)
. Furthermore, let θ be

partitioned as θ :=
[
θTJ , θ

T
R, θ

T
Q, θ

T
B

]T
with θJ ∈ Rr(r−1)/2,

θR ∈ Rr(r+1)/2, θQ ∈ Rr(r+1)/2, and θB ∈ Rrm. Further
define the matrices

J(θ) = vtsu(θJ)T − vtsu(θJ),

R(θ) = vtu(θR)T vtu(θR),

Q(θ) = vtu(θQ)T vtu(θQ),

B(θ) = vtfr,m(θB),

where the function vtu : Rr(r+1)/2 → Rr×r maps a vector
of length r(r + 1)/2 to an upper triangular matrix, the
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(a) γ = 2.5 · 10−1 (b) γ = 1.25 · 10−1 (c) γ = 7.81 · 10−3

Fig. 1. The progress of our method for reduced model order of r = 8 is depicted for decreasing levels γ. The given
transfer function is illustrated as black solid line, the low-order surrogate transfer function is depicted as green
dashed line, and the error is shown as blue dash-dotted line. The sample points are depicted as black crosses.

function vtsu : Rr(r−1)/2 → Rr×r maps a vector of length
r(r − 1)/2 to a strictly upper triangular matrix, and the
function vtfr,m : Rrm → Rr×m reshapes a vector of length
rm to an r × m matrix. Then, to each θ ∈ Rnθ one can
assign the pH system

ΣpH(θ) :

{
ẋ(t) = (J(θ)−R(θ))Q(θ)x(t) +B(θ)u(t),

y(t) = B(θ)TQ(θ)x(t).

(1)

Conversely, to each pH system ΣpH with r states and m
inputs and outputs one can assign a vector θ ∈ Rnθ such
that ΣpH = ΣpH(θ) with ΣpH(θ) as in (1).

For details of the construction, we refer the reader to
Schwerdtner and Voigt (2020). In the following, we denote
the transfer function of ΣpH(θ) by HpH(·, θ).
Using this parametrization, we minimize the objective
function
L (γ,H,HpH(·, θ), S) :=

1

γ

∑
si∈S

([
‖Hg(si)−HpH(si, θ)‖2 − γ

]
+

)2
, (2)

with respect to θ for decreasing values of γ > 0, where

[·]+ : R→ [0,∞), x 7→
{
x if x ≥ 0,

0 if x < 0

and S ⊂ iR := {λ ∈ C | Re(λ) = 0}. Minimizing this
objective function for decreasing values of γ effectively
reduces the H∞ error between Hg and HpH. Furthermore,
using L comes with several benefits compared to a di-
rect minimization of ‖Hg −HpH‖H∞

. These are discussed

in Schwerdtner and Voigt (2020).

To obtain a good approximation of Hg by minimizing L,
the sample points si ∈ S must capture the error transfer
function Hg −HpH with sufficient accuracy, such that

max
si∈S
‖Hg(si)−HpH(si)‖2

is close to ‖Hg −HpH‖H∞
. However, each new sample

point also increases the computational demand of the
optimization, since both the large-scale transfer function
and our surrogate transfer function (and gradient of the
their difference with respect to θ) must be evaluated
at each sample point. This speed/accuracy trade-off is
circumvented by a recently developed adaptive sampling
strategy, which adds new sample points at those locations
where the discrepancy between Hg(s) and HpH(s) is larger
than a tolerance which is automatically adjusted by the
algorithm. For implementation details we refer to Schw-
erdtner and Voigt (2021).
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Fig. 2. H∞ error comparison for different MOR methods

3. EXPERIMENTAL RESULTS

We assess the performance of our described optimization-
based MOR by computing low-order approximations to
a large-scale mass-spring-damper model from Gugercin
et al. (2012). Fig. 1 illustrates how the minimization of
L for decreasing values of γ leads to increasingly accurate
surrogate models. Furthermore, it can be observed that
the number of sample points is increased as γ is reduced to
capture the error transfer function with sufficient accuracy.

In Fig. 2, we report the H∞ errors that are obtained when
using our method in comparison with another structure-
preserving as well as an unstructured MOR method. The
key observation is that using our method, we can obtain
pH structured surrogate models that are as accurate as
models obtained from unstructured MOR routines (such
as BT), while other structured MOR methods (such as pH-
IRKA developed in Gugercin et al. (2012)) typically lead
to a decrease in accuracy. All reported results are obtained
with the setup described in Schwerdtner and Voigt (2021).

REFERENCES

Gugercin, S., Polyuga, R.V., Beattie, C., and van der
Schaft, A. (2012). Structure-preserving tangential in-
terpolation for model reduction of port-Hamiltonian
systems. Automatica J. IFAC, 48(9), 1963–1974.

Schwerdtner, P. (2021). Port-Hamiltonian system identi-
fication from noisy frequency response data. Preprint
arXiv:2106.11355.

Schwerdtner, P. and Voigt, M. (2020). Structure preserv-
ing model order reduction by parameter optimization.
Preprint arXiv:2011.07567.

Schwerdtner, P. and Voigt, M. (2021). Adaptive sampling
for structure-preserving model order reduction of port-
Hamiltonian systems. IFAC-PapersOnline, 54(19), 143–
148.

MATHMOD 2022 Discussion Contribution Volume, 10th Vienna Conference on Mathematical Modelling, Vienna, Austria, July 27-29, 2022

80




