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Abstract: Classical projection-based model order reduction methods, like the reduced basis
method, are popular tools for getting efficiently solvable reduced order models for parametric
PDEs. However, for some problems, the error-decay with respect to the dimension of the linear
projection space is predetermined to be slow, e.g., for parameterized wave equations with jump
discontinuities.
In order to cope with this issue, we consider approximations formed by a linear combination
of given functions enhanced by ridge functions – a Linear/Ridge expansion. For an explicitly
or implicitly solution of a parameter-dependent problem, we reformulate finding a best
Linear/Ridge expansion in terms of an optimization problem that we solve with a particle
grid algorithm.
The linear functions as well as the ridge profiles are built offline with a greedy-type algorithm.
By training the directions offline, we can achieve an efficient online evaluation to solve the
projected parametric PDE.
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1. MOTIVATION

As a motivating example for the developed method, we
recall the parametric linear wave equation.

Parametric wave Consider the linear wave equation
∂2ttu − µ2 ∂2yyu = 0 for t > 0 and y ∈ R with initial
conditions u(0) = u0 and u̇(0) = 0. The parameter-
dependent solution is given by the famous d’Alembert
formula as u(t, y;µ) = 1

2 (u0(y − µt) + u0(y + µt)). Hence,

choosing v1 = v2 = u0, c1 = c2 = 1
2 , b1 = b2 = 0 as well

as a1 = (−µ, 1)>, a2 = (µ, 1)> and x = (t, y)> yields a
representation of the solution u(t, y;µ) = c1v1(a>1 x+b1)+
c2v2(a>2 x + b2) as a sum of two ridge functions. Besides,
also for u̇(0) 6= 0, the wave equation is a sum of two, but
then different, ridge functions.

This problem is particularly interesting since it is known
that projection-based (i.e., linear) model order reduction
techniques do not work in the sense that the decay of
the Kolmogorov N -width is at most O(N−1/2), Greif and
Urban (2019). Nevertheless, the use of ridge functions can
enhance such error reduction and is in fact convenient to
use here since we only need two appropriate ridge profiles.

2. LINEAR/RIDGE EXPANSIONS

We consider a given function u : Ω → R, where Ω ⊂ Rd
is an open bounded domain and u ∈ L2(Ω). In order to
formulate the approximation problem under consideration,
let XN := span(ΦN ) ⊂ L2(Ω), ΦN := {ϕ1, ..., ϕN} be
a given linear space of dimension N ∈ N with ϕi, i =
1, ..., N , being given functions.

In addition to ΦN , we assume that we are given a finite
number M ∈ N of (ridge) profiles VM := {v1, ..., vM} ⊂
L2(R) and consider the approximation problem for x ∈ Ω

u(x) ≈
N∑
i=1

αi ϕi(x) +
M∑
j=1

cj vj(a
>
j x+ bj) =: uδ(x) ∈ UN,M ,

where UN,M is the nonlinear space built with ΦN and VM .
The objective is to minimize the residual of the PDE,
where u = u(·;µ) is the implicit solution.

Given directions and offsets For fixed directions aj ∈ Rd
and offsets bj ∈ R, the coefficients αi ∈ R and cj ∈
R are just given as the solution of a linear system of
equations (Lemma 2.5 in Greif et al. (2022)). Therefore
we reformulate the approximation to just search for the
optimal (aj , bj) ∈ Rd+1.
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2.1 A particle grid algorithm

Since the determination of directions and offsets amounts
to solving a complex optimization problem, we aim at
using a well-known heuristic method, the particle swarm
algorithm. In order to reduce computational complexity,
we arrange our particles (which are associated to the
collection of all directions aj ∈ Rd and offsets bj ∈ R, j =
1, ...,M) in a dynamic grid. For each profile, we collect the
direction and the offset in one vector dj := (aj , bj) ∈ Rd+1.
These vectors are then associated to some component
pj ∈ (−1, 1)D =: SD. The vector (dj)j=1,...,M ∈ RDM of
all directions and offsets is then associated to one particle
p ∈ (−1, 1)DM = SP .

The algorithm produces a sequence of particle grids, where
each grid (i.e., a swarm in form of a grid) P(k) consists
of mpar particles in SP . We choose npar nodes in each
dimension, i.e., mpar = nPpar for npar ∈ N. Then, we

initialize the initial particle grid P(0) by taking the tensor
product, yielding a regular grid. Each particle has uniquely
defined next neighbors in each diagonal direction. This
next neighbor relation does not change in the course of
the iteration. This means that each swarm is a grid whose
internal geometry does not change even if the position of
each particle may vary. We may associate each particle
grid P(k) with a tensor of dimension P (e.g., a matrix for
P = 2).

Solve parametric PDEs We used the method with the
particle grid algorithm to solve two different PDEs, the
already introduced wave equation as well as the thermal
block, that is a classical problem for model reduction,
Haasdonk (2017). (For the thermal block, we used the
domains Ω = (0, 1)2,Ωi := [0, 1] × [ i−14 , i4 ], i = 1, ..., 4).
We fed the method with ΦN = {ϕ1, ϕ2, ϕ3, ϕ4} and VM =
{v1, v2} and the algorithm was able, for a new parameter
µ, to choose the appropriate functions and discard the
remaining functions by setting the coefficients to zero. The
results can be seen in Table 1. Obviously there are more
iterations needed for the case of the wave equation.

PPDE parameter µ no. iterat. K L2-error

Thermal block (0.1, 10, 1, 0.6) 1 5.1019e− 15

Thermal block (10, 2, 0.1, 0.5) 1 1.4446e− 14

Thermal block (0.4, 2, 0.3, 5) 1 6.0861e− 15

Wave 1/4 20 7.6682e− 05

Wave 1/4 83 8.9850e− 16

Wave 1 21 8.2400e− 05

Wave 1 86 3.1765e− 16

Wave 4 28 4.3012e− 05

Wave 4 83 8.9850e− 16

Table 1. Errors and iterations for both para-
metric PDEs and different parameter values.

3. COMPLETE MODEL REDUCTION METHOD

Generation of basis functions Until now, we considered
ΦN and VM as given. However, we need to extract them
from the problem. (Due to page limitation we can just
sketch the idea here.) Using a greedy-type algorithm, we

build a linear basis from snapshots and successively add
ridge functions attained by integration along directions
according to Pinkus (2015).

Efficient online computation By assuming certain affine
parameter dependence, we can get an efficient online
computation that is faster than the classical particle
grid algorithm. Therefore we offline train the parameter-
dependence on the directions using the particle grid algo-
rithm and online use this as an initial guess to just evaluate
a very local optimization.

3.1 Full model reduction method

• Offline: Build basis functions XN =
{ϕ1, . . . , ϕN} and profiles VM = {v1, . . . , vM}.

• We first build XN by a greedy method mini-
mizing an residual error.

• If the error decay is not ”fast” any more,
we switch and add profiles to VM to further
reduce the error.

• With the obtained space UN,M , we train the
parameter-dependence of the directions using
a training set of snapshots.

• Online: For a parameter µ find directions with
a local optimization method by solving the
PDE on the projected space UN,M .

3.2 Conclusion

We introduced a model order reduction method that is
able to solve a broader class of problems than classical
projection-based methods. Unfortunately, the method also
has some drawbacks, like the harder to reach online effi-
ciency. Computing the optimal ridge directions is more
costly than just solving a linear system of equation.
Furthermore, the Linear/Ridge expansions are still a re-
stricted approximation type. One can easily think of func-
tion classes that are still hard to solve with approaches like
this, like PDEs with nonlinear characteristics. But unlike
in the linear case, there won’t be a nonlinear method that
fits all problems. Related approaches are an active field of
research, c.f. Black et al. (2020).
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