
Stabilization of the wave equation in
port-Hamiltonian modelling ?

Birgit Jacob ∗ Nathanael Skrepek ∗∗

∗Department of Mathematics and Science, IMACM, University of
Wuppertal, Germany, (e-mail: bjacob@uni-wuppertal.de)

∗∗Department of Mathematics and Science, IMACM, University of
Wuppertal, Germany, (e-mail: skrepek@uni-wuppertal.de)

Abstract: We investigate the stability of the wave equation with spatial dependent coefficients
on a bounded multidimensional domain. The system is stabilized via a scattering passive
feedback law. We formulate the wave equation in a port-Hamiltonian fashion and show that
the system is semi-uniformly stable.

1. INTRODUCTION

In this paper we investigate the boundary control system

u(t, ζ) =
∂w

∂Tν
(t, ζ), ζ ∈ Γ1,

∂2w

∂t2
(t, ζ) =

1

ρ(ζ)
div (T (ζ)∇w(t, ζ)) , ζ ∈ Ω,

w(t, ζ) = h(ζ), ζ ∈ Γ0,

w(0, ζ) = w0(ζ), ζ ∈ Ω,

∂w

∂t
(0, ζ) = w1(ζ), ζ ∈ Ω,

y(t, ζ) =
∂w

∂t
(t, ζ), ζ ∈ Γ1,

(1a)

with feedback law

u(t, ζ) = −k(ζ)y(t, ζ), ζ ∈ Γ1, (1b)

where t ≥ 0, Ω ⊆ Rn is a bounded domain with Lipschitz
boundary ∂Ω = Γ0 ∪ Γ1 with Γ0 ∩ Γ1 = ∅, Γ0 and Γ1 are
open in the relative topology of ∂Ω and the boundaries of
Γ0 and Γ1 have surface measure zero. Furthermore, w(ζ, t)
is the deflection at point ζ ∈ Ω and t ≥ 0, and profile
h is given on Γ0, where the wave is fixed. Let Young’s
elasticity modulus T : Ω→ Cn×n be a Lipschitz continuous
matrix-valued function such that T (ζ) is a positive and
invertible matrix (a.e.) and T (·)−1 ∈ L∞(Ω)n×n. The
vector ν denotes the outward normal at the boundary and
∂
∂Tνw(t, ζ) = Tν ·∇w(t, ζ) = ν ·T∇w(t, ζ) is the conormal
derivative. The Lipschitz continuous mass density ρ : Ω→
R+ satisfies ρ, 1

ρ ∈ L∞(Ω). Further, k : Γ1 → R is a

measurable positive and bounded function such that also
its pointwise inverse is bounded, i.e. k, 1

k ∈ L∞(Γ1).
Finally, w0 and w1 are the initial conditions.

Strong stability of (1) has been investigated in Quinn
and Russell (1977). In Humaloja et al. (2019) this sys-
tem also appears in port-Hamiltonian formulation, but
with constant T and ρ and C2 boundary. Under these
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restrictions, they show that this system is exponentially
stable. However, semi-uniform stability, a notion which is
stronger than strong stability and weaker than exponential
stability, of (1) with spatial dependent functions ρ and T
on quite general domains has not been studied so far.

We aim to show semi-uniform stability of (1) using a port-
Hamiltonian formulation. Semi-uniform stability implies
strong stability, and thus we extend the results obtained
in Quinn and Russell (1977). To prove our main result
we use the fact that semi-uniform stability is satisfied
if the port-Hamiltonian operator generates a contraction
semigroup and possesses no spectrum in the closed right
half plane. Port-Hamiltonian systems encode the underly-
ing physical principles such as conservation laws directly
into the structure of the system structure. For finite-
dimensional systems there is by now a well-established
theory Maschke and van der Schaft (1992); Duindam
et al. (2009). The port-Hamiltonian approach has been
further extended to the infinite-dimensional situation, see
e.g. Villegas (2007); Jacob and Zwart (2012); Kurula and
Zwart (2015). In Kurula and Zwart (2015) the authors
showed that the port-Hamiltonian formulation of the wave
equation (1) possess unique mild and classical solutions.

2. PORT-HAMILTONIAN FORMULATION OF THE
SYSTEM

We split the system (1) into a time independent system

div T (ζ)∇we(ζ) = 0, ζ ∈ Ω,

we(ζ) = h(ζ), ζ ∈ Γ0,

∂we

∂Tν
(ζ) = 0, ζ ∈ Γ1,

(2)

and a dynamical system

∂2wd

∂t2
(t, ζ) =

1

ρ(ζ)
div(T (ζ)∇wd(t, ζ)), ζ ∈ Ω,

wd(t, ζ) = 0, ζ ∈ Γ0,

wd(0, ζ) = w0(ζ)− we(ζ), ζ ∈ Ω,

∂wd

∂t
(0, ζ) = w1(ζ), ζ ∈ Ω,

∂wd

∂Tν
(t, ζ) = −k∂wd

∂t
(t, ζ), ζ ∈ Γ1

(3)
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where t ≥ 0. The original system is solved by w(t, ζ) =
we(t, ζ)+wd(ζ). As in Kurula and Zwart (2015) the system
in (3) can be described in a port-Hamiltonian manner by

choosing the state x(t, ζ) =
[
ρ(ζ) ∂∂twd(t,ζ)

∇wd(t,ζ)

]
. By using the

convention [
x1(t)
x2(t)

]
:= x(t) := x(t, ·)

we can write the system (3) as

d

dt
x(t) =

[
0 div
∇ 0

] [
1
ρ 0

0 T

]
x(t),

x(0) =

[
ρw1

∇(w0 − we)

]
,

γ0
1
ρx1(t)

∣∣
Γ0

= 0,

γνTx2(t)
∣∣
Γ1

= −kγ0
1
ρx1(t)

∣∣
Γ1

By γ0 and γν we denote the boundary trace (extension
of f 7→ f

∣∣
∂Ω

) and the normal trace (extension of f 7→
ν · f

∣∣
∂Ω

), respectively. Kurula and Zwart (2015) choose

the state space L2(Ω)n+1 equipped with the energy inner
product

〈x, y〉 :=
〈
x,
[

1
ρ 0

0 T

]
y
〉
L2(Ω)n+1

,

which is equivalent to the standard inner product of
L2(Ω)n+1 thanks to the assumptions on T and ρ. They
then show the existence of mild and classical solution via
semigroup methods. For well-posedness this is a suitable
state space, but when it comes to stability this state space
is too large as it does not reflect the fact that the second
component of the state variable x2 is of the form ∇v, for
some function v in the Sobolev space H1

Γ0
(Ω). Thus, we

choose the state space XH as L2(Ω) × ∇H1
Γ0

(Ω), instead

of L2(Ω)n+1. Note that ∇H1
Γ0

(Ω) is closed in L2(Ω)n by
Poincaré’s inequality. Hence, XH is also a Hilbert space
with the L2-inner product. Nevertheless, we also use the
equivalent energy inner product on XH, that is

〈x, y〉XH :=
〈
x,
[

1
ρ 0

0 T

]
y
〉
L2(Ω)n+1

.

Furthermore, we define

A :=
[

0 div
∇ 0

] [ 1
ρ 0

0 T

]
with D(A) :=

[
1
ρ 0

0 T

]−1 (
H1

Γ0
(Ω)× H(div,Ω)

)
as densely defined operator on L2(Ω)n+1. Note that we
have already packed the boundary condition γ0

1
ρx1 = 0

on Γ0 into the domain of A. Moreover, by construction
ranA = XH. Taking the state space and the remaining
boundary conditions (feedback) into account gives

A := A
∣∣
D(A)

, where

D(A) :=
{
x ∈ D(A)

∣∣∣ γνTx2 = −kγ0
1
ρx1 on Γ1

}
∩ XH

(4)

as an operator on XH.

Proposition 1. The operator A given by (4) is a generator
of contraction semigroup.

3. STABILITY RESULTS

Definition 2. We say a strongly continuous semigroup
(T (t))t≥0 on a Hilbert space X is strongly stable, if for
every x ∈ X we have limt→∞‖T (t)x‖X = 0.

We say a continuous semigroup (T (t))t≥0 on a Hilbert
space X is semi-uniformly stable, if there exists a con-
tinuous monotone decreasing function f : [0,∞) → [0,∞)
with limt→∞ f(t) = 0 and

‖T (t)x‖X ≤ f(t)‖x‖D(A), x ∈ D(A).

Note that semi-uniform stability is also defined by
‖T (t)A−1‖ → 0 or ‖T (t)(1 + A)−k‖ → 0 as in Batty
and Duyckaerts (2008). However, this is equivalent to our
definition. Semi-uniform stability implies strong stability.

We denote by A the operator given by (4) which is
associated to the port-Hamiltonian formulation of (1). Our
main result is the following theorem.

Theorem 3. The semigroup generated by A is semi-
uniformly stable.

For the original system (1) strong stability of A translates
to: There is a we ∈ H1(Ω) such that for every initial values
w0 ∈ H1(Ω), w1 ∈ L2(Ω) the solution w satisfies

lim
t→∞
‖w(t, ·)− we(·)‖H1(Ω) = 0.

4. CONCLUSION

In this paper we showed semi-uniform stability of the mul-
tidimensional wave equation equipped with a scattering
passive feedback law.
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