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1. INTRODUCTION

In this discussion paper we consider the (boundary) con-
trol of irreversible thermodynamic systems using the ir-
reversible port Hamiltonian framework. We first show
how infinite dimensional port-Hamiltonian formulations
initially derived for reversible systems (Le Gorrec et al.,
2005) have been extended to the modelling of irreversible
thermodynamic systems controlled at the boundaries of
their spatial domains (Ramı́rez et al., 2022). In a second
instance we show, on the heat equation example, how
to adapt the well known control by interconnection and
damping injection method to the boundary control of this
particular class of systems.

2. IRREVERSIBLE PORT HAMILTONIAN SYSTEMS

Thermodynamic systems are systems for which the ther-
mal domain plays a central role and the energy goes from
one physical domain to the thermal domain in an irre-
versible way. It is the case for example of chemical reactors,
diffusion systems, smart materials, and all temperature
dependent systems. This class of irreversible systems does
not fit in the port Hamiltonian framework. In order to
overcome this issue, and nevertheless exploit as far as
possible the physical properties of the system, many al-
ternative approaches such as contact formulations, pseudo
port Hamiltonian formulations and GENERICs (Grmela

and Öttinger, 1997) have been proposed in the litterature.
Among them the irreversible port Hamiltonian (IPH) for-
mulations (Ramı́rez et al., 2013) have shown to be very
useful for analysis and control design (Ramı́rez et al., 2016)
in the finite dimensional case. These formulations have
been recently extended to the modelling of infinite dimen-
sional irreversible thermodynamic systems controlled at
the boundaries of their spatial domains, leading to the
following definition (Ramı́rez et al., 2022).

Definition 1. A boundary controller irreversible port Hamil-
tonian system is a system defined by the following set of
PDEs:
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with z ∈ [a, b], x ∈ Rn the set of energy variables, s ∈ R
the entropy, H(x, s) the total energy. P0 = −P>0 ∈ Rn×n,
P1 = P>1 ∈ Rn×n, gs ∈ R, G0 ∈ Rn×m, G1 ∈ Rn×m
with m the number of states involved in the entropy
production. R0 ∈ Rm×1, R1 ∈ Rm×1 and rs ∈ R
stand for the vectors of modulated driving forces with 1
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M is spanning the columns of Pe, defined by 2 Pe =
1 The following pseudo (locally defined) brackets are used to define
the thermodynamic driving forces of the system
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for some smooth functions Γ, Ω and G.
2 0 has to be understood as the zero matrix of proper dimensions.
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P1 0 G1 0
0 0 0 gs
G>1 0 0 0
0 gs 0 0

 and where Ξ1 and Ξ2 satisfy Ξ>2 Ξ1 +

Ξ>1 Ξ2 = 0 and Ξ>2 Ξ2 + Ξ>1 Ξ1 = I.

As an example the heat equation defined on a one di-
mensional spatial domaine (z ∈ [0, L]) can be formulated
as an irreversible port Hamiltonian system choosing the
entropy s(z, t) as state variable and the total internal

energy U(t) =
∫ 1

0
u(z, t)dz where u(z, t) is the internal

energy density as Hamiltonian. From the balance equation
on the internal energy and Gibb’s equation one can write
the IPH formulation
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where λ denotes the heat conduction coefficient. From (3)
the boundary inputs and outputs of the system are
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respectively the entropy flux and the temperature at each
boundary.

3. BOUNDARY CONTROL OF THE HEAT
EQUATION

We consider now the boundary control of the 1D heat
equation. The idea is to use the Thermodynamic avail-

ability function A =
∫ 1

0
a(z, t)dz, defining the distance

between the energy and the tangent plane at the desired
equilibrium point as shown in Figure 1 as closed loop Lya-
punov function (Availability Based Interconnection (ABI))
and to use Entropy Assignment (EA) to guarantee the
convergence of trajectories to the desired equilibrium.

s∗(ζ)

u(s∗)

a(ζ, t)
u(s)

ua(s, s
∗)

s(ζ, t)

J/m

Fig. 1. Thermodynamic availability function.

In this respect the boundary control feedback v = β(y) +
v′, with v′ an auxiliary boundary input, is chosen to map
(6), (7) into the target system

∂ts =rs∂ζ (δsH) + ∂ζ (rsδsH) (7)

ũ =Ξv′ (8)

where H = U and

Ξ =


δsA
T

∣∣∣∣
L

0

0
δsA
T

∣∣∣∣
0

 and v′ =

λ
(
∂ζ (δsA)

T

)∣∣∣∣
L

λ

(
∂ζ (δsA)

T

)∣∣∣∣
0

 (9)

and rs = γs{S|A}. It is the case if the following matching
conditions are satisfied

γs{S|Ha}∂ζ (δsH) + ∂ζ (γs{S|Ha}δsH) =0 (10)
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A target temperature profile of the form T ∗e = m∗ζ +

b∗,∀ζ ∈ [0, L] leads to the solution β(y) =

[
km∗

T |L
km∗

T |0

]T
.

We consider now the additional feedback on (8)-(9)

ũ = −Γy (12)

with Γ = ΞΦΞ>, and Φ = Φ> > 0, then the sys-
tem is asymptotically stable. If Φ is defined by Φ =

diag
(
φL

T |L ,
φ0

T |0

)
where φL and φ0 are strictly positive, the

target temperature profile is achievable from any initial
condition T0. At the end the control is

u = β(y)− ΦΞ>y (13)
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Fig. 2. Behavior of the absolute error of temperature
response with respect to desired equilibrium profile,
using ABI (left) control and ABI-EA (right) control.

As numerical application let’s consider the heat equation
with initial condition T0 = 303.15,∀ζ ∈ [0, 0.1] and target
profile T ∗e = 150ζ + 313.15, ζ ∈ [0, 0.1]. The closed
loop performances using Availability based interconnec-
tion with or without Entropy assignment are given in
Figure 2. It shows that the use of the availability based
interconnection allows to reach an equilibrium but that
EA is necessary to avoid bias.

REFERENCES

Grmela, M. and Öttinger, H.C. (1997). Dynamics and
thermodynamics of complex fluids. I. Development of
a general formalism. Phys. Rev. E, 56(6), 6620–6632.
doi:10.1103/PhysRevE.56.6620.

Le Gorrec, Y., Zwart, H., and Maschke, B. (2005). Dirac
structures and Boundary Control Systems associated
with Skew-Symmetric Differential Operators. SIAM
Journal on Control and Optimization, 44(5), 1864–1892.
doi:10.1137/040611677.

Ramı́rez, H., Le Gorrec, Y., and Maschke, B. (2022).
Boundary controlled irreversible port-Hamiltonian sys-
tems. Chemical Engineering Science, 248 part A,
117107.

Ramı́rez, H., Le Gorrec, Y., Maschke, B., and Couenne,
F. (2016). On the passivity based control of irreversible
processes: A port-Hamiltonian approach. Automatica,
64, 105–111.

Ramı́rez, H., Maschke, B., and Sbarbaro, D. (2013). Ir-
reversible port-Hamiltonian systems: A general formu-
lation of irreversible processes with application to the
CSTR. Chemical Engineering Science, 89, 223–234.

MATHMOD 2022 Discussion Contribution Volume, 10th Vienna Conference on Mathematical Modelling, Vienna, Austria, July 27-29, 2022

94




