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Abstract: A dynamical model for an outbreak of dengue fever with countermeasures as control
inputs is considered. We formulate an optimal control problem (OCP) for maintaining a hard
infection cap with preferably low control effort and study different scenarios numerically. To this
end, we solve the OCP in both open and closed loop using model predictive control (MPC).
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1. INTRODUCTION

Mathematical models have been used to model epidemics
since decades. For instance, compartmental models, where
people are characterised by their state of infection, are
used to describe the spread of the disease, see, e.g., Het-
hcote (2000). Due to the ongoing COVID-19 pandemic
researchers proposed a variety of compartmental models
tailored to model particular characteristics of the dis-
ease, see e.g. Grundel et al. (2022). Here, optimal control
problems (OCPs) are formulated with countermeasures
as control inputs and solved to determine a reasonable
(theoretically optimal) strategy. Here, the main goal is to
maintain a hard infection cap while keeping drawbacks
resulting from the enforced countermeasures as low as
possible. However, besides COVID-19, a couple of vector-
borne diseases seriously endangering public health are re-
emerging in Europe. Hence, we aim at transferring recently
proposed methods, see e.g. Grundel et al. (2021), to de-
termine (near) optimal intervention strategies to a dengue
fever model, see e.g. Fischer et al. (2019). In particular, we
propose an MPC scheme to solve the problem and study
the impact of the choice of the prediction horizon length
and weights in the objective function on the total number
of infections.

2. MODEL AND PROBLEM FORMULATION

We consider the model studied in Fischer et al. (2019)
consisting of two species: humans and mosquitos (vectors).
Transmission may occur if a susceptible mosquito bites
an infectious human or if an infectious mosquito bites a
susceptible human.

2.1 System dynamics

Let Sh, Vh, Ih, and Rh denote the total number of
susceptible, vaccinated, infected, and recovered people and
Am, Sm, and Im denote the aquatic (larves), susceptible,

and infected mosquitos, respectively. Then, the dynamics
for the humans and mosquitos are given by

Ṡh = µhNh + θVh −
(
Bβmh

Nh
Im + ψ + µh

)
Sh

V̇h = ψSh −
(
θ + σ

Bβmh

Nh
Im + µh

)
Vh

İh =
Bβmh

Nh
Im (Sh + σVh)− (ηh + µh)Ih

Ṙh = ηhIh − µhRh

Ȧm = φ

(
1− Am

3Nh

)
(Sm + Im)− (ηA + µa + ca)Am

Ṡm = ηaAm −
(
Bβhm
Nh

Ih + µm + cm

)
Sm

İm =
Bβhm
Nh

IhSm − (µm + cm)Im.

The control u = (ψ, ca, cm) ∈ L∞
loc([0,∞), [0, 1]m), m = 3,

consists of the vaccination rate ψ as well as the rates
of larvicide ca and adulticide cm, respectively. In the
remainder, we collect all states in x(t) ∈ Rn, n = 7, and
write ẋ(t) = f(x(t), u(t)).

2.2 Optimal control problem

Our goal is to maintain a hard infection cap, i.e.,

Ih(t) ≤ Imax ∀ t ≥ 0,

with as little control effort as possible. This motivates the
following OCP

min
u

J(x0, u) =

∫ tf

0

ℓ(x(t;x0, u), u(t)) dt (1a)

s.t. ẋ(t) = f(x(t), u(t)), x(0) = x0 (1b)

Ih(t) ≤ Imax ∀ t ≥ 0 (1c)

with stage costs ℓ : Rn × Rm → R,

ℓ(x, u) := ω

(
Ih
Imax

)2

+
1− ω
m
∥u∥22
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and non-negative weights ω ∈ [0, 1].

We enforce the controls to be constant over one week
reflecting the fact that it takes time to implement the
countermeasures. Moreover, we use model predictive con-
trol (MPC) to mimic real-life decision making by updating
the control variables when novel data is available. Given
step size ∆t > 0, prediction horizon length N ∈ N≥2, and
the current time instant k ∈ N0, the three main steps of
MPC are

(1) measure current state x̂ = x(k∆t),
(2) solve the OCP (1) on [k∆t, (k + N − 1)∆t) to get

optimal control uk : [k∆t, (k +N − 1)∆t),
(3) implement solution µ(k) = uk(k∆t) and increment

k ← k + 1.

3. NUMERICAL RESULTS

In our simulations we set Nh = 100, 000 as well as

S0
h = 99, 990, V 0

h = 0, I0h = 10, R0
h = 0,

A0
m = 300, 000, S0

m = 300, 000, I0m = 0.

The values of the system parameters are listed in Table 1.
We solve the OCP (1) both in open and closed loop over
a time window of one year.

Table 1. Overview of all parameters

symbol description value

Nh total human population 100, 000
B average biting rate 0.8

βmh infection rate from vector to human 0.375
βhm infection rate from human to vector 0.375

µ−1
h

average life expectancy of humans 80 · 365
η−1
h

average infectious time of humans 3

µ−1
m average life expectancy of mosquitoes 10
ηa maturation rate of larvae 0.08
φ amount of eggs per breeding place 6
µa natural death rate of larvae 0.25
σ efficacy of the vaccine 0.2
θ waning immunity 0.05

We study the impact of the different choices of the weight-
ing parameter ω ∈ [0, 1] and the prediction horizon length
N ∈ N≥2 on the total nunber of infections within one
year. Results can be found in Figure 1. Note that in all
scenarios the hard infection cap is maintained. If we do
not penalise the number of infections (ω = 0) the infection
cap is reached and the outbreak evolves faster. The higher
the weight on penalising infections, the more people are
vaccinated (top to bottom). Moreover, the total number
of infections for different combinations of ω and N is
listed in Table 2. Both, in open and closed loop, increasing

Table 2. Total number of infections within one
year depending on weighting ω and horizon N .

N
ω

0 0.001 0.005 0.01 0.5

2 95422 91194 87334 77446 10036
4 95359 89693 58552 41937 4389
6 95313 87914 43004 29524 2959
8 95382 87769 36919 24284 2311
12 95318 89256 35951 20859 1681

open loop 95296 89715 76131 50060 1552
∥u∥∞ 0.0557 0.0626 0.0738 0.0771 0.1116

Fig. 1. Results with cap Imax = 5, 000 for increasing
weight ω from top to bottom: Ih (left), Vh (right).

the weight ω yields a reduction of the total number of
infections for a fixed prediction horizon length N (left to
right).

For fixed weight ω, we observe that in most cases, increas-
ing the horizon length N also results in lower case num-
bers. However, there is an exception for ω = 0.001: If we
increase the prediction horizon from N = 8 to N = 12, the
total number of infections slightly increases. However, the
weight ω = 0.001 for penalising the number of infections
is very small. Thus, it is cheaper to accept more infections
for the trade-off of less control effort. This becomes partic-
ularly prominent in open loop with ω = 0.01. In Figure 1
(bottom left), the infection numbers rise towards the end of
the prediction horizon since we cannot reduce the control
effortwithout causing the number of infections to explode
within the considered time window.

4. CONCLUSIONS AND OUTLOOK

We studied an OCP for maintaining a hard infection cap
in case of an outbreak of dengue fever. We found that
the choice of both the weights in the objective function
and the prediction horizon length are crucial to reduce the
total number of infections. Future research will consider
several serotypes to model vaccination more accurately.
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